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Abstract
Given a query graph, top-k subgraphmatching finds up to𝑘 matches

in a data graph with the highest scores according to a user-defined

scoring function. It has wide applications across many fields, includ-

ing knowledge graphs and social networks. Due to the enormous

search space, existing methods are not efficient enough on large

graphs. In this paper, we propose PTAB, an efficient algorithm for

top-k subgraph matching. It traverses an efficiently pruned search

space by topology-aware sub-space score upper bounds computed

from a novel hop index, which stores the range of node properties in

a constrained multi-hop neighborhood of each node. Additionally,

PTAB integrates a cost-aware root selection strategy, which chooses

query nodes leading to a search process that utilizes the pruning

power of the hop index as much as possible. Furthermore, we use a

novel edge-cut strategy to handle general query graphs with cycles.

Experimental results on real and synthetic datasets demonstrate

that our method outperforms existing methods.

CCS Concepts
• Information systems→ Information retrieval query pro-
cessing.
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1 Introduction
Graph databases have garnered significant attention recently for

their capacity to store entity relationships in a graphical format.

One of the most important query forms in graph databases is top-k

subgraph matching [12, 30]. Similar to top-k queries in relational

databases, these queries retrieve representative data subsets char-

acterized by specific property combinations, which translate to
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match score:  

 
  node score:

(a) Query graph and the score function

5 4 5 1 4 3 53 4 38

(b) Data graph

Figure 1: A top-k subgraph matching example. The num-
bers below the programmers and the testers represent their
competency. Edges are labeled “past successful collaboration”
and are omitted for simplicity.

high scores computed from node properties in the matching re-

sults. Specifically, given a data graph 𝐺 , a query graph 𝑄 , and a

score function 𝑆 , top-k subgraph matching returns the 𝑘 subgraph

matches of 𝑄 in 𝐺 with the highest scores according to 𝑆 .

Fig. 1 demonstrates an application of top-k subgraph matching

for mission assignment within a company. The data graph in Fig.

1(b) illustrates an organizational network of project managers, archi-

tects, programmers, and testers (labeledM,A, P, and T, respectively).
In this network, edges indicate previous successful collaborations,

and the competency of the individual 𝑣 , denoted by𝜙 (𝑣), is recorded
for programmers and testers as their node properties.

In scenarios where a project requires one individual from each

of these four categories, it is crucial for smooth project execution

that these professionals have prior cooperative experience, as repre-

sented by the query graph in Fig. 1(a). Moreover, the quality of the

project’s output is influenced by the competency of the program-

mer and the tester. In a project that more heavily depends on the

programmers’ competency, we may calculate the project’s output

quality as 𝑆 (𝑓 ) = 2𝜙 (𝑓 (𝑃)) + 𝜙 (𝑓 (𝑇 )). The top-k subgraph match-

ing outlined in Fig. 1 can be used to identify high-quality candidate

personnel assignments based on these criteria. The top-3 subgraph

matches of this example are 𝑓1 = {(𝑀,𝑀1), (𝐴,𝐴1), (𝑃, 𝑃1), (𝑇,𝑇1)},
𝑓2 = {(𝑀,𝑀1), (𝐴,𝐴1), (𝑃, 𝑃1), (𝑇,𝑇2)}, 𝑓3 = {(𝑀,𝑀1), (𝐴,𝐴1), (𝑃,
𝑃2), (𝑇,𝑇4)}, and the corresponding match scores are 21, 20 and 14.

Top-k subgraph matching is challenging mainly due to the fol-

lowing two factors:

https://doi.org/10.1145/3627673.3679790
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• The search space is vast because of the problem’s NP-hardness

[25]. However, the query parameter 𝑘 is typically smaller than

the total number of subgraph matches. A naive approach, which

explores the entire search space to obtain all subgraph matching

results and then sorts them to get the top-k, is inefficient as it

examines too much unpromising space and generates too many

redundant matches.

• Efficient pruning is difficult. Identifying sub-spaces of the search

space that can be safely pruned requires knowledge of the over-

all top-k scores and the score range of the matches that these

sub-spaces can produce, which are difficult to obtain without

complete exploration. Meanwhile, the pruning methods need to

be efficient, incurring as little overhead as possible.

To address the two challenges above, we propose a novel hop
index that stores precomputed property value bounds for each data

node, from which we can efficiently infer topology-aware score

bounds of the sub-spaces in the search space spawned from any top-

k subgraph matching query. With the help of the hop index, PTAB,
our top-k subgraph matching algorithm, can identify the promising

sub-spaces to explore first and safely prune unpromising sub-spaces.

Moreover, we propose a root node selection optimization for acyclic

queries and extend our method to general queries by an edge-cut

strategy. With these techniques, PTAB is able to excessively prune

the search space (Sec. 8.2.2) and achieve significant speedup in

terms of end-to-end query time compared with state-of-the-art

top-k subgraph matching methods (Sec. 8.2.1).

To sum up, we make the following contributions in this paper:

• Hop-index-based topology-aware bounding. We design a

novel hop index, which stores for each node the property value

bounds in its constrained multi-hop neighborhood. Based on the

hop index, we propose an efficient sub-space score bound estima-

tion method that requires little exploration. The estimated score

bounds are topology-aware due to the hop index’s structure,

leading to improved tightness.

• Pruned PTAB exploration. We propose a search framework,

PTAB, which gauges how promising each sub-space of the search

space is with the hop-index-based bounds and guides the search

accordingly.

• Cost-based root selection. We propose a novel cost-based

strategy for selecting the root of tree queries to search from,

which minimizes the exploration cost.

• Edge-cut strategy for general query graphs. We extend our

method to general query graphs with cycles by an edge-cut

strategy that cuts low-selectivity edges from the query graph

to transform it into a tree, largely preserving the query graph

structure to expose pruning opportunities.

• Extensive experiments on real and synthetic datasets. We

conduct experiments on several real-world and synthetic datasets.

Results show that our method outperforms existing methods.

2 Related work
2.1 Subgraph Matching
The existing subgraph matching algorithms can be classified into

two main categories [21]: search-based methods and join-based

methods. The search-based methods conduct backtracking search

in the search space consisting of the Cartesian product of candidate

data nodes of the query nodes. The first search-based method for

subgraph matching is the Ullmann algorithm [26], while the subse-

quent methods [2, 4, 9, 13, 17, 22, 23] improve the performance by

pruning the search space, using a better search node order, reducing

redundant computation, etc. The join-based methods [1, 18, 28] con-

vert the subgraph matching problem to a multi-way join problem

in which relations correspond to edges in the query graph.

Subgraph matching methods can be used to answer top-k sub-

graph matching queries in a naive sort-after-match framework,

which tends to be inefficient since they need to explore the whole

search space to retrieve all the matches, compute the scores, and

sort the matches accordingly.

2.2 Top-k Queries in Relational Databases
Many classical algorithms have been proposed for relational top-

k queries, including TA [10], NRA [10], and rank-join [15]. Most

top-k algorithms for relational databases cannot be applied to the

top-k subgraph matching problem due to the differences in the

underlying data structures. However, Take2 [24], the state-of-the-

art algorithm with theoretical optimal time complexity for top-k

full conjunctive queries in relational databases, models the problem

as finding a min-cost path using dynamic programming, which is

closest to the graph setting. Therefore, we adapted Take2 [24] for

top-k subgraph matching and compared our method with it in our

experiments.

2.3 Top-k Subgraph Matching
Top-k subgraph matching with tree subgraph patterns has been

studied extensively. Tree patterns, which are also called twigs or

acyclic patterns in the existing literature, refer to patterns that do

not contain cycles. The search space of top-k subgraph matching

can be seen as the Cartesian product of the candidate data node sets

of the query nodes. Existing methods partition the search space

into several sub-spaces according to some criteria and probe the

sub-spaces for the top-k matches. Partitioning methods are either

node-centric, which span a forest of subgraph matches from the

candidate data nodes of a selected root query node, where each tree

in the forest constitutes a sub-space [7, 8, 11, 27, 29]; or subgraph-
centric, which divide the data graph into several subgraphs possibly

with overlap, ensuring that each match of the query graph is in a

single subgraph [31].

Some methods additionally use precomputed information to or-

der the sub-spaces by how promising they are in terms of producing

the top-k acyclic subgraph matches. For example, [27] orders the

sub-spaces simply by their root candidate data node’s score. Other

works compute the score upper bounds of each sub-space and then

explore the sub-space with a high upper bound first. Specifically,

[31] computes the score upper bound of a sub-space as the summa-

tion of the maximum scores of each node candidate, which ignores

the topological constraints imposed by the subgraph pattern, lead-

ing to a loose bound.

In this paper, we propose to tighten the sub-spaces’ score upper

bounds by accounting for the subgraph pattern’s topology using the

hop index (Sec. 6). In fact, our upper bound estimation method is

independent of the partitioning scheme and search strategy. Based

on this novel index-based upper bound estimation, we propose a
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top-down search framework called PTAB with node-centric search

space partitioning, which significantly outperforms [11] and [7]

experimentally.

As for top-k subgraph matching with general subgraph patterns

that contain cycles, existing works decompose these patterns into

several acyclic subpatterns. They then either rank-join these subpat-

terns [29], or alternate among subpatterns to expand their results in

the descending order of scores to retrieve the top-ranking matches

of the original patterns [8]. Instead of decomposing the query graph,

we propose an edge-cut strategy (Sec. 5.3), which largely preserves

the original query graph structure to expose more pruning oppor-

tunities and adopts a lightweight checking mechanism to retrieve

matches of the original patterns.

3 Preliminary
We will introduce the problem definitions and necessary notations

in this section. Tab. 1 summarizes the notations used in this paper.

For ease of presentation, we focus on undirected labeled graphs

in this paper. The extension of our method to directed graphs is

straightforward and will be discussed in Sec. 7.2.

Definition 3.1 ((Data) Graph). A (data) graph 𝐺 is an undirected

labeled graph represented as a quadruple (𝑉 , 𝐸, 𝐿, 𝜙), where 𝑉 is

a finite set of nodes, 𝐸 ⊆ 𝑉 × 𝑉 is the edge set, 𝐿 is a function

mapping every node 𝑣 or edge (𝑢, 𝑣) to its label 𝐿(𝑣) or 𝐿((𝑢, 𝑣)),
and 𝜙 : 𝑉 → R is a function mapping every node 𝑣 to its property

value.

Without causing ambiguity, the graph is interchangeably de-

noted as 𝐺 (𝑉 , 𝐸) or 𝐺 (𝑉 , 𝐸, 𝐿). For 𝑣 ∈ 𝑉 and a positive integer ℎ,

we use 𝑁ℎ (𝑣) to denote the set of nodes within a distance no greater
than ℎ to the node 𝑣 (including 𝑣), i.e., 𝑁ℎ (𝑣) = {𝑢 |𝑑 (𝑢, 𝑣) ≤ ℎ}. We

omit the digit 1 for 1-hop neighbors: 𝑁 (𝑣) = 𝑁1 (𝑣). Additionally,
we represent the ℎ-hop neighbors with a specific label 𝑙 of the node

𝑣 as 𝑁ℎ (𝑣, 𝑙) = {𝑢 |𝑢 ∈ 𝑁ℎ (𝑣) and 𝐿(𝑢) = 𝑙}. The label set of node
𝑣 ’s neighbors is represented by 𝐿(𝑁ℎ (𝑣)) = {𝐿(𝑢) |𝑢 ∈ 𝑁ℎ (𝑣)}.

Definition 3.2 (Query Graph). A query graph is an undirected

labeled graph 𝑄 (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ), where 𝑉𝑄 and 𝐸𝑄 restrict the topo-

logical structure of the matched subgraph, and 𝐿𝑄 specifies the

labels of query nodes and edges.

Definition 3.3 (Cyclic Query / Tree Query (Acyclic Query)). A
query is cyclic if its query graph contains at least one cycle; other-

wise, it is a tree query, also called an acyclic query.

Definition 3.4 (SubgraphMatching). Given a data graph𝐺 (𝑉𝐺 , 𝐸𝐺 ,
𝐿𝐺 ) and a query graph 𝑄 (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ), a subgraph matching is a

function 𝑓 : 𝑉𝑄 → 𝑉𝐺 , which satisfies the following conditions:

• Vertex constraint. ∀𝑢 ∈ 𝑉𝑄 , 𝐿𝑄 (𝑢) = 𝐿𝐺 (𝑓 (𝑢)).
• Edge constraint. ∀𝑒 = (𝑢1, 𝑢2) ∈ 𝐸𝑄 , there is also an edge

(𝑓 (𝑢1), 𝑓 (𝑢2)) in 𝐸𝐺 with 𝐿𝑄 ((𝑢1, 𝑢2)) = 𝐿𝐺 ((𝑓 (𝑢1), 𝑓 (𝑢2))).
The mapped subgraph in the data graph is called a subgraph match.

We use the semantics of subgraph homomorphism in this work.

Note that our method can be easily extended to top-k subgraph

isomorphism by checking whether two query nodes are mapped to

the same data node in each matching.

Score functions reflect the importance or user preference of a

subgraph match, defined as follows:

Table 1: Notations

Notation Description

𝐺 , 𝑄 data graph and query graph

𝑁ℎ (𝑢, 𝑙) 𝑢’s l-labeled ℎ-hop neighbors

𝐿(𝑁 (𝑢)) label set of 𝑢’s neighbors

𝑆 (𝑓 ) score of a matching 𝑓

𝑆𝑢 (𝑓 (𝑢)) node score about the query node 𝑢 of 𝑓 (𝑢)

Definition 3.5 (Score Function). Given a query 𝑄 and a subgraph

matching 𝑓 of it on the data graph, a score function 𝑆 is a linear

combination of the matched nodes’ property values
1
:

𝑆 (𝑓 ) =
∑︁
𝑢∈𝑉𝑄

𝑆𝑢 (𝑓 (𝑢)) =
∑︁
𝑢∈𝑉𝑄

𝑐𝑢 × 𝜙 (𝑓 (𝑢)), (1)

where {𝑐𝑢 |𝑢 ∈ 𝑉𝑄 } is the score coefficient set, and 𝑆𝑢 (𝑓 (𝑢)) =
𝑐𝑢 × 𝜙 (𝑓 (𝑢)) is the node score function.

Example. In Fig. 1, 𝜙 (𝑣) represents the competency of each com-

pany employee 𝑣 . Thematching score function is 𝑆 (𝑓 ) = 𝑆𝑃 (𝑓 (𝑃))+
𝑆𝑇 (𝑓 (𝑇 )), where 𝑆𝑃 (𝑓 (𝑃)) = 2𝜙 (𝑓 (𝑃)) and 𝑆𝑇 (𝑓 (𝑇 )) = 𝜙 (𝑓 (𝑇 ))
are the node score functions for the query nodes 𝑃 and𝑇 , and 𝑐𝑃 = 2

and 𝑐𝑇 = 1 are the score coefficients.

Notably, our methods can be generalized to cases where each

node has multiple properties and the score function is defined by

multiple property values (Sec. 7.2).

Now we give the definition of the research problem, top-k sub-

graph matching, as below:

Definition 3.6 (Top-k Subgraph Matching). Given a data graph𝐺 ,

a query graph𝑄 , and a score function 𝑆 , a top-k subgraph matching

problem (𝐺,𝑄, 𝑆) is to find a set𝑀 of at most 𝑘 subgraph matches

(|𝑀 | ≤ 𝑘) such that there does not exist a subgraph matching

𝑓 ′ ∉ 𝑀 which has a higher score than some matches in 𝑀 , i.e.,

�𝑓 ∈ 𝑀, 𝑆 (𝑓 ′) ≥ 𝑆 (𝑓 ).

4 Overview
As illustrated in Fig. 2, our top-k subgraph matching method con-

sists of two components: (1) offline hop index construction (dashed

arrows) and (2) online enumeration (solid arrows).

Given a data graph, a hop index is constructed offline, storing

property ranges of each node’s neighborhood within a certain num-

ber of hops (Sec. 6). Then, in the online phase, PTAB traverses the
data graph to retrieve the top-k results (Sec. 5). During the traversal,

PTAB leverages the hop index to estimate the score upper bound

for each sub-space of the search space (Sec. 6.3), which aids in iden-

tifying the promising sub-spaces for exploration and pruning the

unpromising ones. Additionally, the root selection strategy (Sec.

7.1) minimizes the exploration cost starting from the selected root.

We also introduce a novel heuristic-based edge-cut strategy for

extending our methods from tree query graphs to general query

graphs (Sec. 5.3).

1
However, our methods can also fit score functions that are monotone on each node

property, such as the monotone ranking function [16]. Formally, a function 𝐹 is

monotone if 𝐹 (𝑥1, · · · , 𝑥𝑛 ) ≤ 𝐹 (𝑥 ′
1
, · · · , 𝑥 ′𝑛 ) whenever 𝑥𝑖 ≤ 𝑥 ′𝑖 for every 𝑖 .
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Figure 2: Overview of PTAB.

5 PTAB
In this section, we first introduce our top-k subgraph matching

framework, PTAB for tree queries, which is efficient due to pruning

with the sub-spaces’ upper bounds obtained from the hop index

(Sec. 6). Then we extend it to general queries using a novel edge-cut

strategy in Sec. 5.3.

5.1 Key Abstraction: Search Trees
In the subsequent sections, we will rely on search trees as a key

abstraction for illustrating PTAB. Intuitively, a search tree represents
the sub-space spanning from a data node that can be matched to

the root query node, assuming the query graph is a tree query. (We

will introduce how to handle general query graphs in 5.3, which is

based on the framework for tree query graphs.)

Relevant notations. Given a tree query graph 𝑄 , we denote its

root node chosen by the root selection strategy (Sec. 7.1) as 𝑢𝑟 . For

every query node 𝑢 ∈ 𝑉𝑄 , we denote the subquery rooted at 𝑢 as

𝑄𝑢 , and the tree height, i.e., the maximum path length from 𝑢 to a

leaf of 𝑄𝑢 , as ℎ𝑒𝑖𝑔ℎ𝑡 (𝑄𝑢 ). A query node 𝑢’s candidate node set is

denoted as𝐶 (𝑢), which can be any set containing each node 𝑣 ∈ 𝑉𝐺
such that exists a subgraph matching 𝑓 with 𝑓 (𝑢) = 𝑣 .

5.1.1 Search Tree Exploration. Given a query 𝑄𝑢 , any top-k sub-

graph matching method conceptually explores a search forest to
identify the top-k results, in which each search tree is rooted at

a data node 𝑣 ∈ 𝐶 (𝑢), denoted as 𝐺𝑢
𝑣 . For example, in Fig. 3, the

search trees 𝐺𝑀
𝑀1

, 𝐺𝑀
𝑀2

, 𝐺𝑀
𝑀3

collectively form a search forest of

the top-k subgraph matching query in Fig. 1. Each search tree is

a sub-space of the entire search space, constructed in a top-down

fashion starting from the root data node 𝑣 , expanding a query edge

(𝑢1, 𝑢2) at each step, adding each 𝑣2 ∈ 𝐶 (𝑢2) as a child node of

each 𝑣1 ∈ 𝐶 (𝑢1), where 𝐶 (𝑢2) can be pruned based on 𝑣1, 𝑣1’s an-

cestor nodes, 𝑢2’s node label, and (𝑢1, 𝑢2)’s edge label. A subgraph

matching that leads to a match in 𝐺𝑢
𝑣 is denoted as 𝑓𝑣 . Note that

the exploration does not involve explicitly materializing the search

trees in most cases, and is usually implemented as some variation

of depth-first or breadth-first search.

5.1.2 Search Tree Pruning. The search forest of a top-k subgraph

matching query can be huge on large data graphs due to enormous

candidate node set sizes. It is clearly wasteful to explore the entire

search space for answering top-k subgraph matching queries, since

the total number of subgraph matches is often much greater than

𝑘 . There are two ways to prune the search space. Firstly, we can

identify more promising search trees to explore first, which are

more likely to produce the top-k results. Secondly, we can avoid

exploring the search trees that cannot produce the top-k results. An

effective tool that enables both pruning approaches is the estimate

of a search tree’s score upper bound, i.e., an upper bound on the

5 34 4 35 4 1 5 1 4 34 3 38

Figure 3: The search forest of the top-k subgraph matching
query in Fig. 1. The upper bound estimation method will be
introduced in Sec. 6.3.

scores of the subgraph matches that this search tree can produce,

as shown in the following example.

Example. With the search forest in Fig. 3, suppose 𝑘 = 3 and we

know the score upper bounds of the query trees𝐺𝑀
𝑀1

and 𝐺𝑀
𝑀2

are

21 and 13, respectively. (The bound for𝐺𝑀
𝑀1

happens to be tight, i.e.,

equal to the score of the top-1 matching score from it.) We can iden-

tify𝐺𝑀
𝑀1

as themore promising search tree due to its higher score up-

per bound and traverse it first to get results. The third largest score

in 𝐺𝑀
𝑀1

is 14, of the matching {(𝑀,𝑀1), (𝐴,𝐴2), (𝑃, 𝑃2), (𝑇,𝑇4)}.
Since 𝑘 = 3 and𝐺𝑀

𝑀2

’s score upper bound is not greater than 14, we

can avoid traversing 𝐺𝑀
𝑀2

altogether.

Clearly, the tighter these upper bounds are, the more effective

the pruning will be. However, it is challenging to obtain tight score

upper bounds of the search trees, since it is necessary to account

for both label and topology information, which no existing work

has considered simultaneously. In addition, we would also like the

upper bound estimation method to incur as low an overhead as

possible. We will discuss our solution using the hop-index-based

estimation technique, which efficiently produces topology-aware

bounds, in Sec. 6.

5.2 PTAB for Tree Queries
Supposing that we have access to any search tree’s score upper

bound, Alg. 1 describes the PTAB search framework for tree queries

that traverses the promising search trees first and avoids the un-

promising ones using these bounds.

To implement search space pruning, we use the following two

data structures:

• Pool: Pool is a max-heap maintained for a tree query, containing

elements in the form of (𝑣, 𝑓𝑣, 𝑆 (𝑣,𝑢𝑟 )), where𝑢𝑟 is the root query
node, 𝑣 is a candidate data node in 𝐶 (𝑢𝑟 ), and 𝑆 (𝑣,𝑢𝑟 ) is a score
estimate of the search tree 𝐺

𝑢𝑟
𝑣 , which is either its score upper

bound estimated as in Sec. 6.3 or the largest score among its

currently remaining subgraph matches. Pool, sorted by 𝑆 , guides
the exploration of promising search trees by always popping the

search tree with the highest score estimate (line 7). Unpromising

search trees are pruned from Pool (line 5).
• Queue: A Queue is a max-heap maintained for each (𝑢, 𝑣) pair,
denoted as Queue[𝑢][𝑣], where 𝑢 is a query node and 𝑣 ∈ 𝐶 (𝑢).
Each Queue contains elements in the form of (𝑓𝑣, 𝑆 (𝑣,𝑢𝑟 )) and
serves as an intermediate data structure for maintaining Pool.

The algorithm first selects a node 𝑢𝑟 as the root of the query

𝑄 and generates a node candidate set 𝐶 (𝑢𝑟 ) for it using LDF and

NFL [21] (line 1; details in Sec. 7.1). For each candidate node 𝑣 of
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the root node 𝑢𝑟 , PTAB computes the score upper bound of the

corresponding search tree 𝐺
𝑢𝑟
𝑣 (lines 2-3; details in Sec. 6.3). We

then construct Pool, which is the key step towards search space

pruning (lines 4-5, Sec. 5.2.1 and Sec. 5.2.2). In the subsequent loop,

we pop elements from Pool and explore the respective search tree

until the top-k results are retrieved (line 6). If the popped matching

𝑓𝑣 has a score equal to the score estimate 𝑆 (𝑣,𝑢𝑟 ), it is the current
top-1 among the remaining matches in this search tree, and since

this search tree is at the top of Pool, it is also the current top-1 in

the remaining search space. Therefore, we put it in the result set

𝑀 and save the next largest-score matching in this search tree in

Pool and the respective Queue for further inspection (lines 9-14).

Otherwise, we compute the top-1 match in this search tree and

save it (lines 16-23). In both cases, we invoke GetNextMatching, a
recursive procedure that gets the matching with the next largest

score in a search tree, which can be implemented by the lattice

search [11]. Specifically, when this procedure is invoked with an

empty matching, it retrieves the top-1 result (line 18).

5.2.1 Identifying Promising Search Trees. PTAB identifies promising

search trees as those with large score estimates, since these search

trees are likely to produce at least one top-k result. After computing

the score upper bounds of each search tree (lines 2-3), they are added

into Pool, excluding those that are pruned (line 5). The max-heap

Pool always pops the search tree with the largest score estimate

for exploration (line 7), which is expected to be the most promising.

To continuously reflect how promising each search tree is as the

search progresses, each iteration of the loop in Alg. 1 refines the

score estimate of the explored search tree in Pool to be the current

top-1 score among its remaining matches (lines 14 and 23).

5.2.2 Pruning Unpromising Search Trees. We can avoid exploring

an entire search tree when its score upper bound is lower than the

lowest score among the top-k matches. Though we cannot know

this lowest score before Alg. 1 completes, we can estimate a lower

bound during the upper bound computation, assuming |𝐶 (𝑢𝑟 ) | ≥ 𝑘 ,

which usually holds on large real-world graphs. Since the upper

bound computation procedure examines at least |𝐶 (𝑢𝑟 ) | subgraph
matches (Sec. 6.3), the 𝑘-th largest matching score among them

is a lower bound on the 𝑘-th largest matching score across the

search space, denoted as 𝐿 (line 4). Then, if a search tree’s score

upper bound is lower than 𝐿, we avoid adding it into Pool (line 5),

thus ensuring that it is pruned from the subsequent exploration.

Note that this pruning technique only works for tree queries, as the

edge-cut extension to general queries (Sec. 5.3) requires an any-k
algorithm, which continuously emits top results until explicitly told

to stop, while this pruning technique only ensures the top-k results.

5.3 Edge-Cut for General Queries
So far, we have only introduced PTAB for tree query graphs. In

this section, we introduce an edge-cut technique to extend PTAB to

general cases when the query graph 𝑄 has cycles, where |𝐸𝑄 | ≥
|𝑉𝑄 |. The technique temporarily removes |𝐸𝑄 | − |𝑉𝑄 | +1 edges from
𝑄 so that the remaining query graph becomes a tree, denoted as

𝑄𝑡𝑟𝑒𝑒 , which can thus be processed by Alg. 1.

The extended version of PTAB is shown in Alg. 2. We first cut

the selected edges to construct 𝑄𝑡𝑟𝑒𝑒 (lines 1-5) according to Eqn.

Algorithm 1: PTAB for Tree Query Graphs

Input: Data graph𝐺 ; tree query𝑄 ; score function 𝑆 ; result size 𝑘 .

Output: The top-k subgraph matching results𝑀 , where |𝑀 | ≤ 𝑘 .

1 Select root node 𝑢𝑟 ; generate candidate node set𝐶 (𝑢𝑟 ) ; Queue← ∅
2 foreach 𝑣 ∈ 𝐶 (𝑢𝑟 ) do
3 𝑓𝑣 ←ComputeUpperBound(𝑣,𝑢𝑟 ,𝐺

𝑢𝑟
𝑣 ,𝑄𝑢𝑟 , Queue)

4 𝐿 ← the 𝑘-th largest 𝑆 (𝑓𝑣 ) in the above loop // Lower bound

5 Pool← ⋃
𝑣∈𝐶 (𝑢𝑟 ) { (𝑣, 𝑓𝑣 ,𝑈 (𝑣,𝑢𝑟 ) ) | 𝑈 (𝑣,𝑢𝑟 ) >= 𝐿}

6 while |𝑀 | ≤ 𝑘 and Pool is not empty do
7 (𝑣, 𝑓𝑣 , 𝑆 (𝑣,𝑢𝑟 ) ) ← Pool.pop()

8 Queue[𝑢𝑟 ][𝑣].pop()

9 if 𝑆 (𝑓𝑣 ) = 𝑆 (𝑣,𝑢𝑟 ) then
10 𝑀 ← 𝑀 ∪ { 𝑓𝑣 }
11 if 𝐺𝑢𝑟

𝑣 is not fully searched then
12 𝑓 ′𝑣 ←GetNextMatching(𝐺𝑢𝑟

𝑣 , 𝑓𝑣)
13 Queue[𝑢𝑟 ][𝑣].push((𝑓 ′𝑣 , 𝑆 (𝑓 ′𝑣 ) ))
14 Pool.push((𝑣, 𝑓 ′𝑣 , 𝑆 (𝑓 ′𝑣 ) ))
15 else
16 foreach 𝑢𝑐 ∈ 𝑢𝑟 .children do
17 foreach 𝑥 ∈ 𝐶 (𝑢𝑐 ) do
18 𝑓𝑥 ← GetNextMatching(𝐺𝑢𝑐

𝑥 , ∅)
19 Queue[𝑢𝑐 ][𝑥].push((𝑓𝑥 , 𝑆 (𝑓𝑥 ))
20 𝑓 𝑢𝑐 ← 𝑓

argmax𝑥 ∈𝐶 (𝑢𝑐 )𝑆 (𝑓𝑥 )

21 𝑓 ′𝑣 ←
⋃

𝑢𝑐 ∈𝑢𝑟 .children 𝑓
𝑢𝑐 ∪ { (𝑢, 𝑣) } // Top-1 in 𝐺

𝑢𝑟
𝑣

22 Queue[𝑢𝑟 ][𝑣].push((𝑓 ′𝑣 , 𝑆 (𝑓 ′𝑣 ) ))
23 Pool.push((𝑣, 𝑓 ′𝑣 , 𝑆 (𝑓 ′𝑣 ) ))
24 Function ComputeUpperBound(𝑣,𝑢,𝐺𝑢

𝑣 ,𝑄𝑢 , Queue):
25 if Queue[𝑢][𝑣] is not empty then
26 return
27 if ℎ𝑒𝑖𝑔ℎ𝑡 (𝑄𝑢 ) ≤ 𝐻 then
28 𝑓𝑣 ← Get a match of𝑄𝑢

29 𝑈 (𝑣,𝑢 ) ← EstimateScore(𝑓𝑣 , Ψ) // Eqn. 7

30 else
31 𝑓𝑣 = { (𝑢, 𝑣) };𝑈 (𝑣,𝑢 ) ← 𝑆𝑢 (𝑣)
32 foreach 𝑢𝑐 ∈ 𝑢.children do
33 foreach 𝑣𝑐 ∈ 𝐶 (𝑢𝑐 ) do
34 ComputeUpperBound(𝑣𝑐 , 𝑢𝑐 ,𝐺

𝑢𝑐
𝑣𝑐 , Queue)

35 (𝑓𝑣𝑐 ,𝑈 (𝑣𝑐 ,𝑢𝑐 ) ) ←
argmax𝑣𝑐 ∈𝐶 (𝑢𝑐 )get<1>(Queue[𝑢𝑐 ][𝑣𝑐 ].top())

36 𝑓𝑣 ← 𝑓𝑣 ∪ 𝑓𝑣𝑐
37 𝑈 (𝑣,𝑢 ) ← 𝑈 (𝑣,𝑢 ) +𝑈 (𝑣𝑐 ,𝑢𝑐 ) // Eqn. 10

38 Queue[𝑢][𝑣].push((𝑓𝑣 ,𝑈 (𝑣,𝑢 ) ))
39 return 𝑓𝑣
40 Function GetNextMatching(𝐺𝑢

𝑣 , 𝑓𝑣):
41 if 𝑢 is a leaf query node then
42 Get 𝑣′ from𝐶 (𝑢 ) s.t. 𝑣′ has node score only lower than 𝑣

43 return { (𝑢, 𝑣′ ) }
44 foreach 𝑢𝑐 ∈ 𝑢.children do
45 𝑓𝑓𝑣 (𝑢𝑐 ) ←GetNextMatching(𝐺𝑢𝑐

𝑓𝑣 (𝑢𝑐 ) , 𝑓𝑣 |𝑄𝑢𝑐
)

46 Queue[𝑢𝑐 ][𝑓𝑣 (𝑢𝑐 )].push((𝑓𝑓𝑣 (𝑢𝑐 ) , 𝑆 (𝑓𝑓𝑣 (𝑢𝑐 ) ) ))
47 Get matching 𝑓 ′𝑣 of𝑄𝑢 by lattice search with scores just below 𝑆 (𝑓𝑣 )
48 return 𝑓 ′𝑣

2, which we will elaborate on later in this section. Then, we con-

tinuously invoke Alg. 1 on 𝑄𝑡𝑟𝑒𝑒 (line 7) and check whether the

subgraph matching obtained is also a matching of 𝑄 (lines 8-9),

only adding it to the result set if so, until we get 𝑘 results.

Note that we formulated Alg. 1 as a top-k algorithm that takes the

required result size 𝑘 as an input, while in line 7 of Alg. 2, we need

an any-k algorithm that can produce an indeterminable number of

matches in descending order of scores. To this end, we designed Alg.

1 so that its framework does not depend on the input parameter

𝑘 , so turning it into an any-k algorithm only requires modifying

the loop’s stopping condition (line 6, Alg. 1) and removing the

lower-bound-based pruning (setting 𝐿 = −∞ in line 4, Alg. 1).
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Algorithm 2: PTAB for Cyclic Query Graphs

Input: Data graph𝐺 ; cyclic query graph𝑄 ; positive integer k.

Output: The top-k subgraph matching results𝑀 , where |𝑀 | ≤ 𝑘 .

1 Initialize an empty set 𝐸𝑐𝑢𝑡 storing the cut edges

2 while there is a cycle𝑂 in the𝑄 do
3 select an edge 𝑒 from𝑂 according to Eqn. 2

4 𝐸𝑐𝑢𝑡 ← 𝐸𝑐𝑢𝑡 ∪ {𝑒 }
5 Cut edges 𝐸𝑐𝑢𝑡 from𝑄 to form an acyclic query𝑄𝑡𝑟𝑒𝑒

6 while |𝑀 | ≤ 𝑘 and the search space of𝑄𝑡𝑟𝑒𝑒 is not completely traversed do
7 𝑚 ← generate a result for𝑄𝑡𝑟𝑒𝑒 in descending order by score

8 if𝑚 is also a subgraph matching of𝑄 then
9 𝑀 ← 𝑀 ∪ {𝑚}

Since the matching score is defined on the nodes rather than

edges, this edge-cut strategy preserves the rank order of the enumer-

ated results, ensuring that Alg. 2 returns the correct top-k results

of the original cyclic query graph.

The only problem left is how to choose which edges to cut. We

hope that the cut edges have low selectivity because this makes it

more likely that the match of𝑄𝑡𝑟𝑒𝑒 is also a match of𝑄 , thus reduc-

ing the number of redundant calls to Alg. 1 and checks. Therefore,

for each cycle 𝑂 in the query graph, we cut the following edge:

𝑒𝑐𝑢𝑡 = argmax

(𝑢,𝑣) ∈𝑂

𝑀 (𝐿(𝑢), 𝐿(𝑣))
𝑀 (𝐿(𝑢)) ×𝑀 (𝐿(𝑣)) , (2)

where 𝑀 (𝐿(𝑢), 𝐿(𝑣)) represents the number of edges in the data

graph that links a node with label 𝐿(𝑢) with a node with label 𝐿(𝑣),
and𝑀 (𝐿(𝑢)) represents the number of data nodes which have the

same label as 𝑢.

Note that the existing decomposition-then-rank-join methods

for cyclic queries only consider the features of the query graphs

and generate the same decomposition for different data graphs with

the same query graph. However, our edge-cut strategy considers

features of both the query graph and the data graph as shown in Eqn.

2. Moreover, our edge-cut strategy preserves more of the original

query graph structure than existing decomposition methods, such

as [29] which decomposes the query graph into stars, to expose

pruning opportunities.

6 Hop Index
To efficiently obtain a search tree’s score upper bound, we propose

the hop index, which accounts for both the label information and

the topology of the query pattern. In this section, we first introduce

the structure (Sec. 6.1) and construction process (Sec. 6.2) of the

hop index. Subsequently, in Sec. 6.3, we explore how to use the

hop index to estimate the topology-aware score upper bound of a

search tree.

6.1 Structure
Given a data graph𝐺 (𝑉 , 𝐸, 𝐿, 𝜙), the hop index stores the following
entry for each node 𝑣 :

Ψ = {(Ψ[𝑣] [𝑖] .𝑚𝑖𝑛,Ψ[𝑣] [𝑖] .𝑚𝑎𝑥) | 𝑖 = 1, · · · , 𝐻 }, (3)

whereΨ[𝑣] [𝑖] .𝑚𝑖𝑛 (Ψ[𝑣] [𝑖] .𝑚𝑎𝑥 ) is theminimum (maximum) prop-

erty value of 𝑣 ’s 2𝑖-hop neighbors with the same label, i.e.,

Ψ[𝑣] [𝑖] .𝑚𝑖𝑛 = min

𝑢∈𝑁2𝑖 (𝑣, 𝐿 (𝑣) )
𝜙 (𝑢), (4)

Ψ[𝑣] [𝑖] .𝑚𝑎𝑥 = max

𝑢∈𝑁2𝑖 (𝑣, 𝐿 (𝑣) )
𝜙 (𝑢), (5)

5 4 5 1 4 3 53 4 38

Figure 4: The hop index of the data graph in Fig. 1(b).

where 𝐻 is an adjustable parameter that controls the range of the

hop index built for each node.

Example. Fig. 4 shows the hop index of nodes 𝑃1 and 𝑇1 from the

data graph of Fig. 1(b). For example, Ψ[𝑃1] [2] .𝑚𝑖𝑛 = 3 is derived

from 𝑃1’s 4-hop neighbor 𝑃4, and Ψ[𝑇1] [2] .𝑚𝑎𝑥 = 5 because the

maximum 𝜙 value of 𝑇1’s 4-hop neighbors is 𝜙 (𝑇1) itself.
Space Usage. The space usage of the hop index is bounded by

𝑂 (𝐻 |𝑉 |). Due to the small-world phenomenon prevalent in real

graphs [19], the parameter𝐻 , which is always smaller than or equal

to the query graph’s diameter, is usually much smaller than |𝑉 |.
Thus, the space taken up by the hop index can be treated as𝑂 ( |𝑉 |).

6.2 Construction
The hop index can be constructed via a message-passing mech-

anism, where each node collects information from its neighbors

and aggregates it iteratively until all the necessary information is

acquired. Alg. 3 describes this message-passing-based hop index

construction process. To streamline calculations, we create an auxil-

iary data structure called the pivot hop index Ψ′: Ψ′ [𝑣] [𝑙] [𝑖] stores
the maximum and minimum property values of 𝑣 ’s 𝑖-hop neighbors

with label 𝑙 , which is an extension of the hop index Ψ:

Ψ[𝑣] [𝑖] = Ψ′ [𝑣] [𝐿(𝑣)] [2𝑖], for 𝑖 = 1, 2, · · · , 𝐻 . (6)

In Alg. 3, lines 1-4 initialize Ψ′ for one hop, which simply con-

sists of the maximum and minimum property values among each

node and their neighbors. Then the algorithm calculates the remain-

ing (2𝐻 − 1)-hop Ψ′ in a message-passing fashion (lines 5-9), as a

node’s 𝑗-hop Ψ′ entry can be obtained by comparing the ( 𝑗 − 1)-
hop Ψ′ entries of its neighbors and selecting the maximum and

minimum among them. Then, the even-order information is re-

tained as the hop index in lines 10-13 (for simplicity, we abbreviate

(Ψ[𝑣] [𝑖] .𝑚𝑎𝑥,Ψ[𝑣] [𝑖] .𝑚𝑖𝑛) as Ψ[𝑣] [𝑖] in the pseudocode).

Algorithm 3: Hop Index Construction Algorithm

Input: Data graph𝐺 ; hop index parameter 𝐻 .

Output: The hop index Ψ of graph𝐺 .

1 foreach node 𝑣 ∈ 𝑉𝐺 do
2 foreach label 𝑙 ∈ 𝐿 (𝑁 (𝑣) ) do
3 Ψ′ [𝑣 ] [𝑙 ] [1] .𝑚𝑎𝑥 = max𝑢∈𝑁 (𝑣,𝑙 ) 𝜙 (𝑢 )
4 Ψ′ [𝑣 ] [𝑙 ] [1] .𝑚𝑖𝑛 = min𝑢∈𝑁 (𝑣,𝑙 ) 𝜙 (𝑢 )
5 for 𝑖 from 2 to 2𝐻 do
6 foreach node 𝑣 ∈ 𝑉𝐺 do
7 foreach label 𝑙 ∈ 𝐿 (𝑁𝑖−1 (𝑣) ) do
8 Ψ′ [𝑣 ] [𝑙 ] [𝑖 ] .𝑚𝑎𝑥 = max𝑢∈𝑁 (𝑣) Ψ

′ [𝑢 ] [𝑙 ] [𝑖 − 1] .𝑚𝑎𝑥

9 Ψ′ [𝑣 ] [𝑙 ] [𝑖 ] .𝑚𝑖𝑛 = min𝑢∈𝑁 (𝑣) Ψ
′ [𝑢 ] [𝑙 ] [𝑖 − 1] .𝑚𝑖𝑛

10 for 𝑖 from 1 to 𝐻 do
11 foreach node 𝑣 ∈ 𝑉𝐺 do
12 Ψ[𝑣 ] [𝑖 ] = Ψ′ [𝑣 ] [𝐿 (𝑣) ] [2𝑖 ]
13 Ψ[𝑣 ] [𝑖 ] = Ψ′ [𝑣 ] [𝐿 (𝑣) ] [2𝑖 ]

Time Complexity. In each iteration, every node gathers the Ψ′

entries from its neighbors, which costs 𝑂 ( |𝐸 |) for the entire graph.
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Hence, the overall time complexity amounts to 𝑂 (𝐻 |𝐸 |). As in Sec.

6.1, since 𝐻 << |𝐸 | holds in most cases, the time complexity can

be treated as 𝑂 ( |𝐸 |).

6.3 Hop-Index-Based Score Upper Bounding
We leverage the hop index to estimate each search tree’s score

upper bounds, as shown in the ComputeUpperBound subroutine in

Alg. 1. Such a bounding procedure is efficient because it touches

on a very small portion of the search tree, and is sufficiently tight

because the hop index carries both label and topology information.

When the search tree’s height is within the hop index parameter

𝐻 , we can estimate its score upper bound by the following lemma,

which involves getting an arbitrary matching from the search tree

(lines 27-29, Alg. 1):

Lemma 6.1. Given a tree query 𝑄𝑢 with height no greater than
the hop index parameter 𝐻 and a subgraph matching 𝑓𝑣 from the
search space𝐺𝑢

𝑣 , then for any matching 𝑓 ′𝑣 from𝐺𝑢
𝑣 , we have 𝑆 (𝑓 ′𝑣 ) ≤

𝑈 (𝑣,𝑢), where the upper bound𝑈 (𝑣,𝑢) is given by:

𝑈 (𝑣,𝑢) =
∑︁

𝑤∈𝑉𝑄𝑢

𝐵𝑤
𝑓𝑣 (𝑤 ) (𝑑𝑢 (𝑤)), if ℎ𝑒𝑖𝑔ℎ𝑡 (𝑄𝑢 ) ≤ 𝐻, (7)

where 𝑑𝑢 (𝑤) is the depth of 𝑤 in the query tree 𝑄𝑢 , i.e., the length
of the path from the root 𝑢 to𝑤 , and 𝐵𝑤

𝑓𝑣 (𝑤 ) (𝑑𝑢 (𝑤)) represents the
upper score bound of𝑤 ’s matched data node in 𝐺𝑢

𝑣 :

𝐵𝑤
𝑓𝑣 (𝑤 ) (𝑑𝑢 (𝑤)) =

{
𝑐𝑤 × Ψ[𝑓𝑣 (𝑤)] [𝑑𝑢 (𝑤)] .𝑚𝑎𝑥 if 𝑐𝑤 > 0

𝑐𝑤 × Ψ[𝑓𝑣 (𝑤)] [𝑑𝑢 (𝑤)] .𝑚𝑖𝑛 if 𝑐𝑤 ≤ 0

(8)

Proof. For anymatching 𝑓 ′𝑣 from𝐺𝑢
𝑣 , suppose that the following

equation is true:

𝑆𝑤 (𝑓 ′𝑣 (𝑤)) ≤ 𝐵𝑤
𝑓𝑣 (𝑤 ) (𝑑𝑢 (𝑤)), (∗)

then the lemma’s correctness is given by

𝑆 (𝑓 ′𝑣 ) =
∑︁

𝑤∈𝑉𝑄𝑢

𝑆𝑤 (𝑓 ′𝑣 (𝑤)) ≤
∑︁

𝑤∈𝑉𝑄𝑢

𝐵𝑤
𝑓𝑣 (𝑤 ) = 𝑈 (𝑣,𝑢) . (9)

Next, we only need to prove Eqn. (∗). By the search tree’s con-

struction procedure, both 𝑓𝑣 (𝑤) and 𝑓 ′𝑣 (𝑤) link data node 𝑣 by paths
with length 𝑑𝑢 (𝑤), thus the distance between 𝑓𝑣 (𝑤) and 𝑓 ′𝑣 (𝑤) in
the data graph is not larger than 2𝑑𝑢 (𝑤). Due to the definition of the
hop index (Sec. 6.1), the property value of 𝑓 ′𝑣 (𝑤) is thus bounded:
Ψ[𝑓𝑣 (𝑤)] [𝑑𝑢 (𝑤)] .𝑚𝑖𝑛 ≤ 𝜙 (𝑓 ′𝑣 (𝑤)) ≤ Ψ[𝑓𝑣 (𝑤)] [𝑑𝑢 (𝑤)] .𝑚𝑎𝑥 . As

𝑆𝑤 (𝑓 ′𝑣 (𝑤)) = 𝑐𝑤 × 𝜙 (𝑓 ′𝑣 (𝑤)), Eqn. (∗) holds. □

When the tree query 𝑄𝑢 ’s height exceeds 𝐻 , the hop index can

still help estimate any search tree 𝐺𝑢
𝑣 ’s score upper bound by re-

cursively exploring each of 𝑢’s child nodes and summing 𝑣 ’s score

with the maximum estimate among the search trees rooted at each

child nodes’ candidates (lines 30-37, Alg. 1):

𝑈 (𝑣,𝑢) = 𝑆𝑢 (𝑣) +
∑︁

𝑢𝑐 ∈𝑢.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
max

𝑣𝑐 ∈𝐶 (𝑢𝑐 )
𝑈 (𝑣𝑐 , 𝑢𝑐 ),

if ℎ𝑒𝑖𝑔ℎ𝑡 (𝑄𝑢 ) > 𝐻. (10)

Example. In Fig. 1’s query, with𝑀 chosen as the root, the query

tree’s height is 2. As in Fig. 4, the hop index is constructed with

𝐻 = 2, so the upper bound of any search tree rooted at a candidate

of𝑀 can be estimated without exploring its child nodes. Specifically,

in the search forest shown in Fig. 1, upon identifying a match 𝑓𝑀1
=

{(𝑀,𝑀1), (𝐴,𝐴1), (𝑃, 𝑃1), (𝑇,𝑇2)} in the search tree 𝐺𝑀
𝑀1

, we can

get a score upper bound for 𝐺𝑀
𝑀1

:𝑈 (𝑀1, 𝑀) = 2 × Ψ[𝑃1] [2] .𝑚𝑎𝑥 +
Ψ[𝑇2] [2] .𝑚𝑎𝑥 = 2 × 8 + 5 = 21. This upper bound is tight, as it

is exactly equal to 𝑆 ({(𝑀,𝑀1), (𝐴,𝐴1), (𝑃, 𝑃1), (𝑇,𝑇1)}), the top-1
match in 𝐺𝑀

𝑀1

.

Our bounding procedure produces score upper bounds that are

both label- and topology-aware. Intuitively, the score upper bound

is tightest when the minimum ormaximum property value recorded

in a data node’s hop index entry corresponds exactly to its same-

label sibling (or itself) with the minimum or maximum property

value in the search tree. Such is the case in the above example,

where Ψ[𝑃1] [2] = 𝜙 (𝑃1) (itself) and Ψ[𝑇2] [2] = 𝜙 (𝑇1) (sibling).
For more efficient bounding, we prevent the same search tree

from repeated exploration by checking whether the auxiliary data

structure, Queue, is empty (lines 25-26, Alg. 1).

7 Optimizations And Extensions
7.1 Root Node Selection
Though every node in a tree query graph can be the root, previous

works on top-k subgraph matching with tree patterns assume a

fixed root node of the query graph [7, 11, 24]. However, the root

node selection affects the tree height, the candidate set size, and

the root score coefficient—all of which have a great impact on the

query efficiency, detailed as follows:

• The smaller the height of the tree, the fewer nodes need to be

fully expanded, since the hop index can provide upper bounds

for any tree with a height that is smaller than 𝐻 (Eqn. 7).

• The smaller the candidate set𝐶 (𝑢𝑟 ) of the root node, the smaller

the number of search trees, thus the fewer the invocations to the

score upper bounding procedure.

• The larger the absolute value of the root node’s score coefficient

|𝑐𝑢𝑟 |, the greater the difference in scores matched at the root

node, so the more likely it is for the search trees’ score upper

bounds to vary greatly, increasing the chances for pruning.

Therefore, we heuristically select the root node for the tree query

𝑄 as follows:

𝑢𝑟 = argmin

𝑢∈𝑉𝑄

𝐻 (𝑄𝑢 ) × |𝐶 (𝑢) |
|𝑐𝑢 | + 1

. (11)

We employ the LDF and NLF [21] to generate a candidate set

𝐶 (𝑢) for each node 𝑢 to compute |𝐶 (𝑢) | and facilitate the subse-

quent search. Label and degree filtering (LDF) is to find 𝐶 (𝑢) =
{𝑣 | 𝑣 ∈ 𝐺, 𝐿𝐺 (𝑣) = 𝐿𝑄 (𝑢), 𝑑𝐺 (𝑣) ≥ 𝑑𝑄 (𝑢)}. Neighbor label fre-
quency filtering (NLF) is to find 𝐶 (𝑢) = {𝑣 | 𝑣 ∈ 𝐺, |𝑁𝐺 (𝑣, 𝑙) | ≥
|𝑁𝑄 (𝑢, 𝑙) | for all 𝑙 ∈ 𝐿𝑄 (𝑁𝑄 (𝑢))}. These two filtering methods can

be done in 𝑂 (𝑉𝐺 ) time, ensuring efficiency in the process.

7.2 Extension to Other Graph Models
In the previous sections, we assume that each node 𝑣 in the graph

only has a single property value 𝜙 (𝑣) for the simplicity of explica-

tion and convenience of notation. However, our methods are readily

adaptable to graphs with multiple properties per node.
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Consider that each node 𝑣 is associated with a property set

A𝑣 , where the value of each property 𝑝 ∈ A𝑣 is denoted by 𝑣 .𝑝 .

Accordingly, the node score function can be defined as a linear

combination of these property values:

𝑆𝑢 (𝑣) =
∑︁

𝑝∈A𝑢

𝑐
𝑝
𝑢 × 𝑣 .𝑝, (12)

where {𝑐𝑝𝑢 | 𝑝 ∈ A𝑢 } is the coefficient set for the query node 𝑢.

To support top-k subgraph matching on graphs with multiple-

property nodes, two primary modifications are required as follows:

(1) Property-specific hop index. The hop index should be constructed

for each property individually. Specifically, we need to maintain

Ψ[𝑣] [𝑝] [𝑖] for each 𝑝 ∈ A𝑣 , which stores the extreme values of

the property 𝑝 within 𝑣 ’s 2𝑖-hop neighborhood with the same

label as 𝑣 .

(2) Multi-property upper score bounds. The node upper score bound
for a node𝑤 in query tree 𝑄𝑢 , previously formulated in Eqn. 8,

needs to be modified for multiple properties as follows:

𝐵𝑤
𝑓𝑣 (𝑤 ) (𝑑𝑢 (𝑤))

=
∑
𝑝∈A𝑤

𝑐
𝑝
𝑤 × 1𝑐𝑜𝑤>0Ψ[𝑓𝑣 (𝑤)] [𝑝] [𝑑𝑢 (𝑤)] .𝑚𝑎𝑥

+∑𝑝∈A𝑤
𝑐
𝑝
𝑤 × 1𝑐𝑝𝑤≤0Ψ[𝑓𝑣 (𝑤)] [𝑝] [𝑑𝑢 (𝑤)] .𝑚𝑖𝑛,

(13)

here, 1 represents the indicator function, which evaluates to 1 if

the condition is true and 0 otherwise.

Ourmethods are also applicable to the directed graphmodel. This

involves constructing and utilizing the hop index without regard

to edge direction, and enumerating matching results following the

directions of the query edges.

8 Experiment
8.1 Setup
8.1.1 Algorithms. We compare our PTAB with four other algo-

rithms: DP-B [11], kTPM [7], Take2 [24], and Eager [24].We selected

these methods not only because they are capable of fitting the score

function defined in Eqn. 12
2
, but also for their state-of-the-art ef-

ficiency. DP-B and kTPM are two classic and high-performance

algorithms specializing in top-k subgraph matching, while Take2

and Eager, originally designed for ranked join queries in relational

databases, can be adapted with some modifications to suit graph-

based scenarios. We set the hop index parameter 𝐻 = 2, which is

sufficient for the majority of real-world queries, since over 90% of

real queries have at most 6 edges [6].

8.1.2 Datasets. We use one synthetic dataset BSBM
3
and two real-

world datasets (DBpedia
4
and Yago

5
) for our experiments. BSBM is a

SPARQL benchmark widely recognized as a criterion for evaluating

graph database engines [5]. DBpedia is an open knowledge graph

spanning various domains and extensively employed in knowledge

discovery [3]. YAGO2 is a high-quality knowledge graph extracted

fromWikipedia [14]. As these datasets are in RDF graph format, we

2
Some methods assume the node score functions have uniform monotonicity, and

some other methods assume the property value of each node is non-negative (e.g.

DP-P [11]). However, our methods can handle a wider range of score functions and

property values.

3
http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

4
https://www.dbpedia.org/

5
https://yago-knowledge.org/

preprocess them as follows: (1) treating the object of the rdf:type
predicate as the node’s label, and (2) retaining only one label for

nodes with multiple labels. Statistics of these datasets are provided

in Tab. 2.

Table 2: Datasets Description

Dataset Nodes Edges Labels

BSBM 15,522,016 94,646,775 1,287

DBpedia 17,768,464 77,490,708 230

Yago2 76,887,746 148,160,386 349,841

8.1.3 Queries. For the BSBM dataset, we use queries from its offi-

cial website
3
. For the DBpedia dataset, we adopt the Feasible [20]

benchmark to generate top-k queries. To the best of our knowledge,

there isn’t an established top-k benchmark for the Yago2 dataset,

so we designed a set of top-k queries that fits the conclusion of

the study on real SPARQL query logs [6]. Across each dataset, we

selected 6 tree queries, and we set 𝑘 = 20 for all experiments except

the experiments studying the performance under various 𝑘 .

8.1.4 Setup. We run our experiments on a server with an Intel

Xeon Gold 6326 2.90GHz CPU and 256GB RAM running Ubuntu

20.04.5 LTS. All algorithms are implemented in C++
6
. Each experi-

ment was repeated three times, and we report the averaged metrics.

8.2 Experiment Results
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Figure 5: Total time comparison on three datasets (𝑘 = 20).

8.2.1 Total time. The total execution times for each method are

depicted in Fig. 5, with 𝑘 = 20 and the selected root is given by the

method from Sec. 7.1 for this experiment. Across all queries, PTAB
demonstrated superior performance, achieving 1.5 ∼ 10 × speedup

to the other methods.

6
The code and queries used in our experiments can be accessed at

https://github.com/fyulingi/PTAB

https://github.com/fyulingi/PTAB
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Table 3: Reduced Proportion of Search Space

Datasets q1 q2 q3 q4 q5 q6

BSBM 0.377 0.589 0.254 0.605 0.497 0.872

DBpedia 0.111 0.116 0.331 0.249 0.563 0.412

Yago2 0.396 0.480 0.185 0.431 0.198 0.282

Most of the subgraph queries in our experiments have enormous

result sizes without the top-k constraint. For example, queries on

BSBM (except 𝑞3, which has only 30 results) all have more than

10, 000 results, and 𝑞4 even has more than 22,000,000 results. Our

experiments shows that PTAB is more efficient than compared meth-

ods in such cases due to less search space exploration (detailed in

Sec. 8.2.2).

Additionally, we investigated how matching times varied with

different 𝑘 values. We selected two representative queries, 𝑞1 from

BSBM and 𝑞5 from DBpedia, for presentation, while similar results

are observed for other queries. The results are displayed in Fig. 6.

𝑞1 query BSBM is a simple tree query degenerated into a chain, and

the time consumed by all methods increases slowly. Conversely,

the 𝑞5 query from DBpedia is a tree query with a height of 3. In

this case, the matching times of kTPM and Eager notably escalate

with the increase of 𝑘 . This increase can be attributed to the need

for extensive search space partitioning during enumeration (kTPM)

or due to prolonged time for constructing auxiliary data struc-

tures for enumeration (the other methods). Meanwhile, our PTAB
exhibits minimal time growth, showcasing consistent efficiency

across queries of varying scales.
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Figure 6: Matching time comparison of various k.

8.2.2 Explored space comparison. A key advantage of PTAB lies

in its score bound estimation based on the hop index, effectively

avoiding unnecessary exploration. To illustrate it, we show the

ratio of the search space explored by PTAB in Tab. 3 (𝑘 = 20 in this

experiment). Across all datasets and queries, PTAB reduces at least

10% and up to nearly 90% search space exploration. This reduction

in exploration space aligns with the observed highest acceleration

ratio of PTAB compared to other methods in the experiment illus-

trated in Fig. 5. Furthermore, we also counted the size of the used

hop index. The hop index is lightweight, occupying only about 5%

of the entire built data graph’s size, and can be built in less than 2

minutes for the largest dataset Yago2. This cost-effectiveness makes

it highly efficient for acceleration purposes.

8.2.3 Root selection. The compared methods do not mention the

root selection, so we conducted a comparative analysis of our root
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Figure 7: Experiments of root selection and edge cut strategy

selection strategy outlined in Sec. 7.1 against three alternative strate-

gies (𝑘 = 20): (1) Random; (2) MinCand; (3) MinDepth to show the

effectiveness of our method. The MinCand (MinDepth) strategy

selects the query node which has a minimum candidate size (forms

the query tree with the minimum height) to be the root node.

The performance of different root node strategies on the BSBM

dataset is illustrated in Fig. 7(a). We can find that both MinCand and

MinDepth outperform Random on average, and either of them could

perform better than the other. However, our proposed strategy,

which considers factors encompassing the height of the search tree,

the size of the root node candidate set, and the query node score

coefficient, enables better performance compared to other methods.

8.2.4 Edge-cut strategy. We extend PTAB to a general cyclic query

graph through the edge-cut strategy introduced in Sec. 5.3. To

assess its effectiveness, we constructed another 5 cyclic queries

using the DBpedia dataset. Subsequently, we compared the run-

time performance between our edge-cut strategy and the existing

decomposition-then-rank-join method. We follow the algorithm

STAR [29] to decompose the cyclic query graph into several stars

and rank-join their results. For a fair comparison, we use PTAB for

the decomposed star queries.

Remarkably, our edge-cut strategy reduces matching time com-

pared to the decomposition-then-rank-join method, which enu-

merates the top-ranking results of each decomposed query pattern

regardless of whether these results are connected in the data graph,

while our edge-cut adopts a more holistic perspective.

9 Conclusion
In this paper, we propose a new algorithm, PTAB, for the top-k sub-

graph matching problem, which is enhanced by a hop index for

score upper bound estimation to prune the search space, and a cost-

aware root node selection strategy that enables PTAB to initiate the

search from nodes leading to minimal exploration costs. We also

extend PTAB to support both acyclic and cyclic query graphs via

an edge-cut strategy. Experimental results on various real and syn-

thetic datasets demonstrate that our method outperforms existing

algorithms for top-k subgraph matching.
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