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ABSTRACT
Partitioning a large graph into smaller subgraphs by minimizing the

number of cutting vertices and edges, namely cut size or replication

factor, plays a crucial role in distributed graph processing tasks.

However, many prior works have primarily focused on optimizing

the cut size by considering only vertex balance or edge balance,

leading to significant workload imbalance and consequently hin-

dering the performance of downstream tasks. Therefore, in this

paper, we address the dual-balanced graph partition problem that

minimizes the cut size while simultaneously guaranteeing both

vertex and edge balance. We propose a lightweight effective two-

phase framework, namely fine-grained splitting and merging (FSM),

which decomposes the graph into more and smaller partitions and

then merges them. FSM offers the flexibility of integrating with

various state-of-the-art single-balanced techniques. We develop

two efficient algorithms Fast Merging and Precise Merging to enable

trade-offs between computational efficiency and partitioning qual-

ity. Experimental results on large real-world graphs demonstrate

that FSM achieves state-of-the-art cut size while maintaining dual

balance. The runtime for downstream tasks PageRank, connected

component, and diameter estimation, can be reduced by a large

proportion, up to 9.43%, 11.35%, and 17.94%, respectively.
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1 INTRODUCTION
The growing size of graphs presents significant time and memory

challenges for algorithms like PageRank [29] and maximal clique
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Table 1: Vertex size imbalance of SOTA partitioners.

Alg. / hollywood indochina arabic

Graph B𝑉 𝜎𝑉 B𝐸 R B𝑉 𝜎𝑉 B𝐸 R B𝑉 𝜎𝑉 B𝐸 R
NE 1.99 41.23% 1.00 1.53 3.12 73.29% 8.26 1.02 2.31 40.81% 1.00 1.04

HEP-100 1.94 42.61% 1.00 1.55 2.21 36.10% 1.00 1.06 1.90 30.57% 1.00 1.04

METIS 1.77 39.78% 1.03 4.59 2.52 71.93% 1.03 1.09 1.85 44.65% 1.03 1.14

enumeration [6, 8]. To address these challenges, graph processing

frameworks such as Pregel [25], GraphX [12], and PowerGraph [11]

have been developed. These frameworks usually require effective

graph partitioning that divides the graph 𝐺 into a family of groups

of vertices and edges. There are two kinds of partitioning paradigms:

vertex partitioning and edge partitioning. Vertex partitioning (also

known as edge cutting) delivers the vertices of 𝐺 into pairwise

disjoint subsets by cutting the edges. In contrast, edge partitioning

(also known as vertex cutting) divides the edges of 𝐺 into pairwise

disjoint subsets by replicating (i.e., cutting) cross-boundary vertices.

The number of cutting edges and vertices is called cut size.

1.1 Motivation
Existing studies [5, 15, 37, 39, 40] have demonstrated that the com-

munication cost is positively correlated with the cut size. Addi-

tionally, the deviation between partitioned sets of vertices (known

as vertex balance) and the deviation between partitioned sets of

edges (known as edge balance) are essential for achieving work-

load balance [5]. Thus, lots of efforts have been made to reduce

the cut size while ensuring vertex balance [19, 30, 33, 36] or edge

balance [26, 31, 38, 39]. However, even the state-of-the-art (SOTA)

methods struggle to optimize these three metrics simultaneously.

Table 1 presents the performance of three representative partition-

ers including NE [39], HEP (𝜏 = 100) [26], and METIS [19] over

real-world graphs downloaded from WebGraph [2–4], where each

graph is partitioned into 𝑝 = 32 parts. Let B𝑉 (resp. B𝐸 ) denote the
vertex balance (resp. edge balance), i.e., the fraction of the largest

vertex (resp. edge) size over the average vertex (resp. edge) parti-

tion size, 𝜎𝑉 denote the coefficient variation of vertex sizes across

partitions, and R denote the replication factor (i.e., the cut size).

As shown in Table 1, we can observe that all three partitioners

achieve promising replication factors and edge balances, but (I) ex-

hibit very poor vertex balances, which suggests that they generate

2378

https://doi.org/10.14778/3665844.3665864
https://github.com/lcj2021/split-merge-partitioner/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3665844.3665864
https://www.acm.org/publications/policies/artifact-review-and-badging-current


0 5 10 15 20
PageRank (sec)

M1

M2

M3

M4

1.5s 2.6s

9.0M
157.8M

8.9M
147.6M

8.9M
156.6M

7.4M
98.9M

9.1M
157.8M

9.0M
153.5M

9.0M
157.6M

7.4M
117.0M

9.5M
157.8M

9.4M
156.6M

9.4M
157.7M

7.6M
122.1M

12.5M
157.8M

12.3M
156.5M

12.4M
157.7M

10.8M
141.2M

0 5 10 15 20 25
Connected Component (sec)

2.5s 3.1s

|V|:9.0M
|E|:315.6M

|V|:8.9M
|E|:315.4M

|V|:9.1M
|E|:315.6M

|V|:9.1M
|E|:315.5M

|V|:9.5M
|E|:315.6M

|V|:9.5M
|E|:315.5M

|V|:12.5M
|E|:315.6M

|V|:12.4M
|E|:315.3M

Gather Scatter

Figure 1: Elapsed time of gather and scatter operations on

PowerGraph using NE partitioner.

excessively large partitions; (II) the sizes of these partitions are

highly skewed, indicating the existence of partitions with a signifi-

cantly large number of vertices, as well as partitions with very few

vertices. Focusing on only one single balance while minimizing the

replication factor can lead to two troublesome problems as follows.

(1) Terrible Workload Imbalance. In Bulk Synchronous Parallel

(BSP) based systems, a global synchronization checkpoint is set

between two iterations. Thus, the machine with the largest work-

load becomes the performance bottleneck. Figure 1 illustrates the

elapsed time of gather and scatter operations on PowerGraph [11]

for the top two iterations of the PageRank and Connected Com-

ponent tasks on four machines (M1, M2, M3, and M4), along with

the involved numbers of vertices and edges. While the number of

involved edges across the four machines is roughly consistent in

the first iteration, there exists a notable discrepancy in elapsed time.

Discrepancies in the number of vertices can lead to differences in

cache hit rates, as well as disparities in the numbers of involved

edges in the subsequent iteration. For example, in the second itera-

tion of PageRank, the discrepancies on the involved edges become

significant in the scatter phase, thereby resulting in variations in

machine elapsed time.

(2) Excessive Memory Consumption. In distributed graph com-

puting frameworks deployed over homogeneous and memory-

constrained clusters, each machine needs to maintain necessary

information, such as neighbor sets and PageRank values for ver-

tices. The excessively large partitions due to vertex imbalance will

significantly increase memory consumption. As for PowerGraph,

the partition with the largest number of vertices becomes the mem-

ory bottleneck. As depicted in Table 1, for the graph hollywood,

the largest partition delivered by METIS has reached 8 times the

average size. The machine hosting such a large partition is highly

susceptible to encountering memory bottlenecks, which can result

in downstream task failures.

Therefore, it is crucial to minimize the replication factor while

guaranteeing both vertex and edge balance. However, dual-balanced

graph partitioning has not yet received sufficient attention and

research despite its importance.

1.2 Challenges and Contributions

Challenge 1: Intractable Complexity. Previous study [39] has estab-

lished the graph partitioning problem, minimizing the replication

factor such that the edge balance is bounded by a constant, which

is an NP-hard problem. The inherent complexity coupled with large

graphs with billions of vertices and edges already poses significant

challenges in terms of time and memory. Dual-balanced graph par-

titioning problem generalizes the single-balanced graph partition

by introducing an additional constraint, making it more difficult to

find an optimal solution that satisfies both balances simultaneously.

Therefore, the partitioning algorithm itself is expected to be light-

weight and efficient. These requirements force us to avoid using

overly complex algorithms and redundant data structures.

Challenge 2: Skewed Degrees. Most real-world graphs follow the

power-law distribution, revealing a skewed degree distribution

that the majority of vertices have low degrees, while only a small

subset of vertices are highly connected, known as hub vertices. Hub

vertices play a crucial role in influencing the density of partitions,

posing a significant challenge in achieving dual balance.

Existing dual-balanced partitioners [1, 24, 40] have made efforts

to address these challenges. EBV achieves dual balance by incor-

porating a scoring function that considers both vertex and edge

loads. BPart modifies FENNEL [36] and requires simultaneous opti-

mization of both vertex and edge balance. MDBGP [1] transforms

the multi-dimensional balance partitioning problem into a mathe-

matical optimization problem and solves it using gradient descent,

but it constrains the number of partitions to powers of two. Be-

yond that, the optimization process of MDBGP involves multiple

rounds of O(𝑛2) intersection point calculations, which is not feasi-

ble for partitioning large graphs. To summarize, these partitioners

(I) suffer from poor replication factors, resulting in a substantial

communication cost that becomes a bottleneck again, and (II) do

not support constraints on vertex-and-edge balance parameters or

fail to achieve the desired constraints. There is a notable imbalance

in both the vertex and edge dimensions for many graphs.

Contributions. To realize dual-balanced graph partitioning, in this

paper, we propose the Fine-grained Splitting and Merging (FSM)

framework. The underlying principle behind the FSM framework is

to deal with vertex balance and edge balance incrementally, ensur-

ing them one by one. The FSM framework consists of two phases,

i.e., fine-grained splitting and subgraph merging.

Specifically, in the fine-grained splitting phase, FSM performs

primary exploration of the graph by decomposing it into small-

size subgraphs. The aim is to group the highly correlated vertices

and edges together, producing a family of fundamental subgraphs.

Moreover, in this phase, we can just concentrate on one balance at

a time while minimizing replication factors. As a result, the frame-

work becomes highly versatile and powerful, making it possible to

integrate with various state-of-the-art single-balance techniques.

In the subgraph merging phase, we assemble the subgraphs

produced above into larger partitions. Thus, we can consider the

partitioning problem from a broader perspective, enabling us to

neutralize the imbalances effectively and enhance the overall per-

formance of the partitioning process. In particular, we formulate

a subgraph allocation problem and develop two lightweight and

effective merging algorithms, Fast Merging and Precise Merging.

In summary, our contributions can be summarized as follows:

(1) We formulate the problem of dual-balanced graph partitioning

that minimizes the replication factor while both vertex balance

and edge balance are guaranteed.
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Figure 2: Edge partition and vertex partition.

(2) We develop a lightweight effective two-phase framework, namely

fine-grained splitting and merging (FSM), for dual-balanced

graph partitioning, that chunks the graph into smaller sub-

graphs and then merges them to form larger subgraphs.

(3) To enable trade-offs between computational efficiency and par-

titioning quality, we propose two efficient algorithms Fast Merg-
ing and Precise Merging. We provide a theoretical optimality

analysis of Fast Merging and provide the approximation ratio.

(4) We conduct extensive distributed experiments on 11 large graphs

against 11 competitors. Compared to the state-of-the-art graph

partitioners, FSM exhibits notable efficiency improvements

across three distributed graph processing tasks: PageRank, con-

nected component, and approximate diameter.

2 PRELIMINARIES AND OVERVIEW
2.1 Dual-balanced Graph Partitioning
Let 𝐺 = (𝑉 , 𝐸) denote an undirected graph, where 𝑉 and 𝐸 repre-

sent the sets of vertices and edges, respectively. For simplicity, the

number of vertices and edges are denoted by 𝑛 and𝑚, respectively.

A 𝑝-partitioning divides𝐺 into 𝑝 partitions, where 𝑝 ≥ 2 and 𝑝 ∈ N.

Definition 1. (𝑝-Edge Partitioning, also called Vertex Cutting).
An edge partitioner divides the edge set 𝐸 into 𝑝 pairwise disjoint
subsets such that

⋃︁𝑝

𝑖=1
𝐸𝑖 = 𝐸 and 𝐸𝑖

⋂︁
𝐸 𝑗 = ∅ for 𝑖 ≠ 𝑗 .

In edge partitioning, each edge is assigned exactly into one subset.

We say a vertex𝑢 is a boundary vertex if it is contained in more than

one subset, which indicates that 𝑢 is replicated in these subsets.

Example 1. As shown at the top of Figure 2, vertices 2 and 4 are
boundary vertices. The adjacent edges 𝑎 and 𝑏 of vertex 2 are assigned
into two different subsets, resulting in a copy of vertex 2.

Definition 2. (𝑝-Vertex Partitioning, also called Edge Cutting).
A vertex partitioner divides the vertex set 𝑉 into 𝑝 pairwise disjoint
subsets, i.e.

⋃︁𝑝

𝑖=1
𝑉𝑖 = 𝑉 and 𝑉𝑖

⋂︁
𝑉𝑗 = ∅ for 𝑖 ≠ 𝑗 .

As shown at the bottom of Figure 2, the vertices {1, 4} and {2, 3}

are assigned to two different subsets. Notice that, to guarantee the

completeness of the partitions (i.e., without losing any edges), the

cutting edges 𝑎 and 𝑐 have to be replicated in many applications,

leading to vertex cuts as well. Bourse et al. [5] have proved that ver-

tex cuts are smaller than edge cuts on power-law graphs. Therefore,

we focus on the widely-used edge partitioning in this paper.

Definition 3. (Vertex Balance & 𝛼-Vertex Balanced Partitioning).
The vertex balance of a 𝑝-partitioning, denoted by B𝑉 , is defined as
B𝑉 =

max
𝑝

𝑖=1
|𝑉𝑖 |∑︁𝑝

𝑖=1
|𝑉𝑖 |/𝑝

. A 𝑝-partitioning is 𝛼-vertex balanced if B𝑉 ≤ 𝛼 .

Definition 4. (Edge Balance & 𝛽-Edge Balanced Partitioning).
The edge balance of a 𝑝-partitioning, denoted by B𝐸 , is defined as

B𝐸 =
max

𝑝

𝑖=1
|𝐸𝑖 |∑︁𝑝

𝑖=1
|𝐸𝑖 |/𝑝

. A 𝑝-partitioning is 𝛽-edge balanced if B𝐸 ≤ 𝛽 .

In the task of edge partitioning, B𝐸 can be rewritten as B𝐸 =

max
𝑝

𝑖=1
|𝐸𝑖 |

|𝐸 |/𝑝 since each edge is just contained in one subset 𝐸𝑖 .

Definition 5. (Replication Factor). The replication factor of a
𝑝-partitioning, denoted by R, is defined as R = 1

|𝑉 |
∑︁𝑝

𝑖=1
|𝑉𝑖 |.

Example 2. As shown at the top of Figure 2, both partitions contain
two edges. Thus, we have the edge balance B𝐸 = 1.0. Vertex 2 and
vertex 4 are replicated once each, resulting in a replication factor of
R = 4+2

4
= 1.5.

Problem Statement. (Dual-balanced Graph Partitioning). Given a
graph 𝐺 and three parameters 𝑝 , 𝛼 , and 𝛽 , the task of dual-balanced
graph partitioning, denoted by MIN-R(𝑝, 𝛼, 𝛽), is to return a 𝑝-edge
partitioning of 𝐺 with the minimum replication factor such that
B𝑉 ≤ 𝛼 and B𝐸 ≤ 𝛽 .

2.2 Overview of the Approach
To reach the objective of minimizing cut size while guaranteeing

dual balance, we propose the Fine-grained Splitting and Merging

(FSM) framework. FSM adopts an incremental algorithmic approach,

by dividing the whole task into two phases as illustrated in Figure 3.

Fine-grained Splitting Phase. In the first Fine-grained Split
phase, our objective is to obtain more and smaller partitions that

have a low cut size and satisfy one single balance constraint at

least. Any state-of-the-art edge partitioner or vertex partitioner

that achieves a single balance can be used for fine-grained splitting.

To maintain allocation information (the subgraph to which a vertex

or an edge belongs) and cutting information (the replication status

of a vertex or an edge), we develop a succinct data structure called

subgraph information (denoted as gInfo), which can reduce storage

costs and accelerate the subsequent merging process.

Subgraph Merging Phase. The core problem addressed in the

Subgraph Merging phase is to merge the subgraphs obtained in the

Fine-grained Splitting phase to achieve the final dual-balanced parti-
tion. Here, we draw inspiration from the Longest Processing Time

(LPT [13]) algorithm. As shown in Figure 3(b), we can abstract the

final partitions as bins and shuffle the fine-grained subgraphs. The

problem then becomes assigning each subgraph to the appropriate

bin. We adopt the attempt merging approach for each subgraph to

determine its candidate bin. We further design the attempt merging
process based on efficiency and quality requirements.

Novelty of the approach. The single-balanced algorithms, like NE,

HEP, and 2PS [27], only optimize a single dimension, while existing

dual-balanced algorithms and systems like BPart [24], MDBGP [1],

and EBV [40] demonstrate suboptimal performance in terms of

replication factor. FSM addresses these shortcomings by applying

an effective two-phase method. The initial phase produces a set of

smaller subgraphs with a minimized cut size, optimizing at least one
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(a) Fine-grained Splitting Phase (b) Subgraph Merging Phase

Figure 3: Overview of the FSM framework.

single balance. The second phase merges these subgraphs to enable

the dual-balanced guarantee. The two-phase framework is flexible

to accommodate powerful splitting or merging strategies. Thus,

FSM allows an excellent replication factor while implementing

adaptive methods to achieve bounds on two dimensions.

3 FINE-GRAINED SPLITTING
Instead of directly partitioning the graph 𝐺 into 𝑝 partitions, we

decompose 𝐺 into more and smaller 𝑝′ = 𝑘 ∗ 𝑝 subgraphs. The

intuition is that most existing graph partitioners can achieve good

replication factors under a single balance constraint, and we can

consider them as small building blocks. These building blocks may

have different sizes initially, but the abundance of blocks and their

small individual sizes provide us with flexibility and room for opti-

mization in subsequent steps.

3.1 Subgraph Information
To maintain the vertex and edge information of the 𝑘 ∗ 𝑝 partitions,

we develop a succinct data structure called subgraph information
(denoted as gInfo), which can reduce storage costs and accelerate

the subsequent merging process. Specifically, gInfo consists of 𝑝′

dense bitsets (shorted as bitset) named rep. When prioritizing edge

balance, the rep bitset is used to track whether a vertex belongs to

a partition. There is also an array named pvec, with a length of𝑚

for edge partitioners and 𝑛 for vertex partitioners, which is used to

record the initial partition assignment of each vertex or edge.

The rep (replication) is typically implemented with a bitset

(dense binary string). If the 𝑣-th position of rep[b] is set to 1, it

indicates that vertex 𝑣 has a replica in 𝑃𝑏 . Using a bitset has several

advantages. (1) Memory efficiency: Compared to hash-based sets, it

can save memory especially when 𝑝′ is not large (2) Accelerating
merging: Using a dense bitset can reduce the constant factor during

set merging operations such as bitset OR and bitset popcount (to

calculate the number of 1s).

3.2 Prioritizing Edge Balance
To obtain the edge-balance building blocks, we can use SOTA edge

partitioners such as NE and HEP. (1) NE [39] is a state-of-the-art

edge partitioner known for achieving edge balance and small R,
by dividing the partitions into core and boundary vertex sets. It

iteratively expands the partitions and prioritizes moving vertices

from the boundary set to the core set, particularly those with fewer

external connections. Then, it assigns the corresponding edges

Algorithm 1: Splitting by Edge Partitioner

Input :partition count 𝑝 , splitting factor 𝑘 and graph 𝐺

Output : subgraph information gInfo (rep and pvec)
1 𝑝′ ← 𝑝 ∗ 𝑘
2 pvec← EdgePart(G, p’)
3 foreach 𝑒 (𝑢, 𝑣) ∈ 𝐸 do
4 𝑏 ← pvec [e]
5 SetBit(𝑟𝑒𝑝 [𝑏], 𝑢, 1)
6 SetBit(𝑟𝑒𝑝 [𝑏], 𝑣, 1)
7 return gInfo

to the current partition. (2) HEP [26] is a hybrid partitioner that

combines NE and HDRF [31]. It partitions high-degree vertices with

HDRF, alleviating the skewness of vertices across partitions. This

approach also reduces the memory overhead of the adjacency list.

The detailed algorithm procedure is outlined in Algorithm 1.

In lines 3-7, we iterate through each edge 𝑒 (𝑢, 𝑣). We retrieve the

subgraph ID 𝑏 to which 𝑒 belongs through pvec. We set the cor-

responding bits for vertices 𝑢 and 𝑣 in the bitset rep[b] to 1 to

indicate their presence in 𝑔𝑏 .

Example 3. As illustrated in Figure 4, we begin by obtaining the
partition information for each edge through the edge partitioner and
storing it in the pvec array. When processing the edge 𝑒 (6, 7), we first
retrieve its assigned subgraph ID, i.e., 2, from pvec. Then, we set the
bits at positions 6 and 7 in the bitset rep[2] to 1.

3.3 Overhead Analysis
The time and memory overheads of the Fine-grained Splitting phase
mainly depend on the partitioner involved. When the splitting

factor 𝑘 is selected, the time and memory overhead of the splitting

stage are 𝑇𝑘 (𝑘 ∗ 𝑝) and 𝑀𝑘 (𝑘 ∗ 𝑝), respectively. For each of the

𝑘 ∗ 𝑝 partitions, we need to maintain a bitset. When applied to

edge partitioners, we track the replication status of vertices, so the

length of the bitset is 𝑛. The memory overhead of the bitset part

is proportional to O(𝑘 ∗ 𝑝 ∗ 𝑛/𝐶) and O(𝑚) for pvec. 𝐶 represents

the word width which is determined by the underlying hardware

and compiler implementation. It should be noted that Algorithm 1

is usually synchronized during partitioning. Thus, the time and

memory overheads of these recording steps have already been

included in 𝑇𝑘 (𝑘 ∗ 𝑝) and𝑀𝑘 (𝑘 ∗ 𝑝).
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Figure 4: An example of performing splitting.

4 SUBGRAPH MERGING
In the Merging phase of the FSM framework, the focus shifts from

the cutting size and single-balance to the optimization of the other

balance metric ‘incrementally’. Through the fine-grained splitting
phase, we obtain 𝑝′ = 𝑘 ∗ 𝑝 small subgraphs (denoted as 𝑔). In this

phase, the task is to merge these subgraphs into 𝑝 target partitions

{𝑃𝑖 }𝑝𝑖=1 while achieving a balanced distribution along the other

dimension as much as possible. Taking edge partitioners as an

example, where the edge balance of the small subgraphs has already

been ensured, our goal is to merge exactly 𝑘 of {𝑔𝑖 }𝑝
′

𝑖=1
into one 𝑃 𝑗 .

Thus, we can obtain 𝑝 partitions with approximately equal numbers

of edges, followed by the selection of 𝑘 subgraphs for each bin.

4.1 Merging Outline
4.1.1 Problem Formulation. We have a set of 𝑝′ subgraphs {𝑔𝑖 }𝑝

′

𝑖=1

along with their information set {𝑔𝐼𝑛𝑓 𝑜𝑖 }𝑝
′

𝑖=1
, where each gInfo

has a bitset rep. We want to allocate this subgraph set to 𝑝 bins

to form the final partition {𝑃𝑖 }𝑝𝑖=1. To maintain the single balance

achieved from the Fine-grained Splitting phase, the load of each bin

is set to 𝑘 , meaning each bin can accommodate exactly 𝑘 subgraphs.

Let 𝜆(𝑏𝑖𝑛𝑖 ) denote the popcount of rep in the 𝑖-th bin, which

is resulted from merging 𝑘 subgraphs. The objective of subgraph
allocation is to distribute {𝑔} among the bins in a way that ensures
approximately equal popcounts across the bins, while minimizing the
maximum popcount among the bins. Thus, we consider the following
minimization problem:

minimize 𝜆(𝑏𝑖𝑛𝑀 ) = max{𝜆(𝑏𝑖𝑛1), 𝜆(𝑏𝑖𝑛2), ..., 𝜆(𝑏𝑖𝑛𝑝 )}.

4.1.2 Algorithm Outline.
(1) Subgraph selection. We sort the𝑝′ subgraphs in non-ascending
order based on their 𝜆. Now subgraph set {𝑔} is sorted, so we have

𝜆(𝑔1) ≥ 𝜆(𝑔2) ≥ ...𝜆(𝑔𝑝′ ). In each iteration, we allocate the first

subgraph in the current subgraph set, that is, the subgraph with

the largest 𝜆 at the current stage (denoted as 𝑔𝑐 ).

(2) Bin selection. In the second step, we select a candidate bin

(𝑏𝑖𝑛𝑐𝑎𝑛𝑑 ) as the destination for the subgraph 𝑔𝑐 .

We maintain a set of currently open bins, called openbin, which
represents bins that still have available capacity for additional sub-

graphs. Initially, openbin includes all 𝑝 empty bins and gradually

shrinks as subgraphs are assigned to bins during the merge process.

Within openbin, we use the attempt merging approach to select

the candidate bin. This involves iterative merging the pending

bin
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Figure 5: An example of performing merging.

subgraphwith each bin in openbin and calculating 𝜆 of the resulting
bin after the merge. The bin with the smallest 𝜆 is chosen as the

candidate bin.

(3) Merging. During the merge processing, subgraph 𝑔𝑐 is merged

into 𝑏𝑖𝑛𝑐𝑎𝑛𝑑 , leading to a new subgraph 𝑏𝑖𝑛𝑐𝑎𝑛𝑑 ∪𝑔𝑐 . The 𝑏𝑖𝑛𝑐𝑎𝑛𝑑 is

then updated to 𝑏𝑖𝑛𝑐𝑎𝑛𝑑 ∪𝑔𝑐 . We then remove 𝑔𝑐 from the subgraph

set {𝑔} and set the newid of 𝑔𝑐 to the id of its candidate bin. If

𝑏𝑖𝑛𝑐𝑎𝑛𝑑 reaches the maximum capacity of 𝑘 subgraphs, it is closed

and removed from openbin. We continue this allocation process

for each subgraph until all subgraphs are allocated to a bin. Finally,

we retrieve the final partitions through pvec and newid.

Example 4. As shown in Figure 5, we sort the four subgraphs in
non-ascending order based on their 𝜆, resulting in the sorted subgraph
set with 𝜆 = 11, 10, 6, 5. We simplify the attempt merging step and
directly add 𝜆 to determine the size of the new bin. When considering
subgraph 𝑔3, its candidate bin is 𝑏𝑖𝑛2 because 𝜆(𝑏𝑖𝑛2) is currently
the smallest. Then we merge 𝑏𝑖𝑛2 and 𝑔3 by performing a bitwise OR
operation between their corresponding rep. Finally, we update the
entry in newid for 𝑔3 to indicate its final partition is 2.

4.2 Merging Algorithm
Based on whether overlap is computed during the bin selection

step, we propose two algorithms: Fast Merge and Precise Merge.

By offering these two merging options, we provide flexibility to

accommodate different requirements and trade-offs between com-

putational efficiency and partitioning quality.

Fast Merge. The Fast Merge algorithm prioritizes speed by sim-

ply removing the attempt merging, as we assume that there is no

overlap in rep between the 𝑔𝑐 and all the bins. As a result, the

attempt merging operation, which previously involved bitwise OR

operations, can now be simplified to a direct summation of the

𝜆s. In this case, we can simplify the bin selection step by selecting

the bin with the smallest 𝜆 within openbin. To further improve

speed, we utilize a min-heap to maintain the bin with the smallest 𝜆

within openbin. The Pop operation on the heap (Algorithm 2, lines

4-5) directly produces the candidate bin for merging. If the number

of small subgraphs in the newly merged bin does not reach the

threshold of 𝑘 , the bin is placed back into the heap. Otherwise, the

merged partition is directly considered as one of the final partitions

(Algorithm 2, lines 7-10).

Precise Merge. The Precise Merge algorithm is a further refine-

ment of the greedy approach, as it carefully evaluates the overlap

when conducting the attempt merging step. Specifically, during the

allocation of subgraph 𝑔𝑐 , it is merged with each bin, and 𝜆 of the

resulting merged bin is calculated (Algorithm 3, lines 4-6). This

2382



Algorithm 2: Fast Merge

Input : subgraph information gInfo, target partition
number 𝑝 and splitting factor 𝑘

Output :partition result

1 Initialize min heap Q with 𝑝 empty nodes
2 Sort(𝑔, 𝑟𝑒𝑝, 𝑛𝑜𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔)

3 foreach 𝑏 ∈ [𝑝′] do
4 candidate← Q .Pop

5 candidate← MergeBin(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑔𝑏)

6 newid [b] = candidate.id
7 if candidate.size < 𝑘 then
8 Q .Push(candidate)
9 else
10 result← result

⋃︁
candidate

11 return result

approach takes into account the potential reduction in 𝜆 due to the

overlap between 𝑔𝑐 and the bins. Once a bin reaches the threshold

of 𝑘 subgraphs, it will no longer be considered in the subsequent

merge process and will be included as one of the final partition

results (Algorithm 3, lines 9-11).

Overhead Analysis. Both Fast Merge and Precise Merge require
maintaining 𝑝 bins. Similar to gInfo, each bin consists of a bitset

(O(𝐿/𝐶)). Moreover, we need an array named newid of length

𝑘 ∗ 𝑝 to record the final partition assignment of each subgraph 𝑔.

𝐿 represents the number of bits in the bitset. If prioritizing edge

balance, it is equal to |𝑉 |, otherwise, it is equal to |𝐸 |. The bins

in Fast Merge are maintained using a min heap, and the space

complexity is O(𝑘 ∗𝑝). During the entire Subgraph Merging process,
we first sort the 𝑘 ∗ 𝑝 subgraphs, resulting in time complexity of

O(𝑘 ∗ 𝑝 ∗ log (𝑘 ∗ 𝑝)). Then each of the 𝑘 ∗ 𝑝 subgraphs needs to

merge with its candidate bin once, resulting in a time complexity

of O(𝑘 ∗ 𝑝 ∗ 𝐿/𝐶) for the entire operation.
Precise Merge performs attempt merging on each of the 𝑘 ∗ 𝑝

subgraphs. Each attempt merging for each subgraph requires a

bitset OR operation with all 𝑝 bins, resulting in a time complexity

of O(𝑝 ∗𝐿/𝐶). Hence, the overall time complexity for Precise Merge
is O(𝑘 ∗𝑝 ∗ log (𝑘 ∗𝑝) +𝑘 ∗𝑝 ∗ (1+𝑝) ∗𝐿/𝐶). Fast Merge efficiently

selects candidate bins using a min heap, which can be completed

in O(log 𝑝) for each subgraph. Hence, the overall time complexity

for Fast Merge is O(𝑘 ∗ 𝑝 ∗ log (𝑘 ∗ 𝑝) + 𝑘 ∗ 𝑝 ∗ (log 𝑝 + 𝐿/𝐶)).
Discussion. As analyzed above, Fast Merge runs faster as it has a
smaller time complexity. Moreover, it boasts a theoretical guarantee

on its approximation rate (see Section 4.3). By utilizing the potential

reduction in 𝜆 due to the overlap between subgraphs and bins,

the merging performance of Precise Merge and the downstream

tasks based on Precise Merge are better than Fast Merge in most

instances, while with a marginal increase in the merging time.

Thus, Precise Merge generally emerges as the preferable option,

particularly when confronted with intricate bin merging scenarios,

especially as the parameter 𝑘 increases. Nevertheless, we notice

that there are cases where Fast Merge outperforms Precise Merge.
The theoretical analysis of Fast Merge also provides some hints to

Precise Merge.

Algorithm 3: Precise Merge

Input : subgraph information gInfo, target partition count

𝑝 and splitting factor 𝑘

Output :partition result

1 Initialize openbins with 𝑝 empty bins
2 Sort(𝑔, 𝑟𝑒𝑝, 𝑛𝑜𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔)

3 foreach 𝑏 ∈ [𝑝′] do
4 foreach 𝑏𝑖𝑛 ∈ openbins do
5 newbin← MergeBin(𝑏𝑖𝑛, 𝑔𝑏)

6 Check and update candidate
7 candidate← MergeBin(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑔𝑏)

8 newid [𝑏]← candidate.id
9 if candidate.size = 𝑘 then
10 openbins← openbins \ candidate
11 result← result

⋃︁
candidate

12 return result

4.3 Theoretical Analysis
We analyze the upper bound of the Merge algorithm, that is, the

approximation rate compared to the optimal case. To simplify the

problem, we do not consider the overlap of bitsets during merging,

i.e., we discuss the Fast Merging algorithm (which is comparable

to Precise Merging in terms of merging quality) where we use the

𝜆 summation instead of bitset OR. We define 𝜂𝑖 =
𝜆 (𝑔𝑖 )
𝜆 (𝑔𝑝′ ) . Since

{𝑔} is sorted non-increasingly, we have 𝜂 = {𝜂1, 𝜂2, ..., 𝜂𝑝′ }, 𝜂𝑖 ≥ 1

for ∀𝑖 ∈ [𝑝′]. This optimization objective is also known as the

𝑘-partitioning problem (NP-complete when 𝑘 = 3 [10]).

Theorem 1. When 𝑘 = 2, i.e., when 𝑝′ = 2 ∗ 𝑝 subgraphs are
merged into 𝑝 bins, Fast Merge can find the optimal solution.

Proof. For a more detailed proof, please refer to our technical

report. Here, we provide an outline of the proof.

According to the Fast Merge algorithm, we place each subgraph

𝑔 into the current smallest bin. In the case of 𝑘 = 2, the process is

simplified to sequentially placing 𝑝 subgraphs into 𝑝 bins, followed

by placing the remaining 𝑝 subgraphs in reverse order. Now, con-

sider the scenario where the maximum bin size obtained from the

Fast Merge algorithm is denoted as 𝜔0. We will argue by contra-

diction that there is no other combination that can yield a smaller

maximum bin size 𝜔 ′ than 𝜔0.

Assume that 𝜔 ′ = 𝜂𝑚 + 𝜂𝑛 , where 𝑚 and 𝑛 are two positive

integers representing the indexes of two bins in the new combina-

tion. Consider three possible cases for the values of𝑚 and 𝑛. Case

1:𝑚,𝑛 > 𝑝 . Case 2:𝑚,𝑛 ≤ 𝑝 . Case 3:𝑚 ≤ 𝑝 < 𝑛 and𝑚 + 𝑛 ≠ 2𝑝 + 1.
In three cases, we can derive contradictions with the following two

conditions. 𝜔 ′ is the maximum bin in the new combination method

and 𝜔 ′ is smaller than 𝜔0. □

Approximation Ratio. Let 𝜔0 denote the optimal size of the

largest bins. The proposed Fast Merging algorithm achieves the

following approximation ratio:

𝜔 ′

𝜔0

< 1 + 𝑘 − 1
𝑚𝑎𝑥 (𝑝 − 1 + 𝑘, 𝑝′ − (𝑝 − 1)𝜂1)

.
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Theorem 2. Suppose subgraph 𝑔𝑙 is the last subgraph placed in
the largest bin, with the size of 𝜂𝑙 . Let us assume that there are 𝑙 (0 ≤
𝑙 ≤ 𝑝′ − 1) subgraphs in total whose vertex sets have sizes greater
than or equal to 𝜂𝑙 , while the remaining 𝑝′ − 𝑙 subgraphs have vertex
sets with sizes less than 𝜂𝑙 . It holds that

𝜔 ′
𝜔0

< (1 + 𝑝−1
𝑙
).

Proof. We define 𝜑 𝑗 = 𝜂𝑚 −𝜂 𝑗 , which represents the difference

between the total size of the merged subgraph in bin 𝑗 and the total
size of the merged subgraph in the largest bin. We have:

𝜔0 =
1

𝑝
(
𝑝′∑︂
𝑖=1

𝜂𝑖 +
𝑝∑︂
𝑗=1

𝜑 𝑗 ) ≥
1

𝑝

𝑝′∑︂
𝑖=1

𝜂𝑖 (1)

(The equality holds only when

∑︁𝑝

𝑗=1
𝜑 𝑗 = 0, i.e. when the vertex

sizes are equal in all bins.) From (1) and 𝜂𝑖 ≥ 1, we have:

𝜔0 ≥
1

𝑝

𝑝′∑︂
𝑖=1

𝜂𝑖 =
1

𝑝
(
∑︂

𝜂𝑖 ≥𝜂𝑙

𝜂𝑖 +
∑︂

𝜂𝑖<𝜂𝑙

𝜂𝑖 ) ≥
1

𝑝
(𝑙 ∗ 𝜂𝑙 + (𝑝′ − 𝑙 ) ) .

𝜂𝑙 ≤
𝑝 ∗𝜔 − (𝑝′ − 𝑙 )

𝑙
=

𝑝

𝑙
∗𝜔0 − (

𝑝′

𝑙
− 1) (2)

The equality holds only when there exist 𝑙 subgraphs with sizes

of 𝜂𝑙 and 𝑝
′ − 𝑙 subgraphs with sizes of 1. When allocating 𝑔𝑙 to a

target bin, there are three cases: (1) No bin has reached 𝑘 subgraphs

and closed. (2) Some bins have reached 𝑘 subgraphs and closed, but

the target bin is still the bin with the smallest total size among all

bins. (3) Some bins have reached 𝑘 subgraphs and closed, but the

target bin is not the bin with the smallest total size among all bins.

Now we consider the first two cases because the sizes of the

subgraphs to be merged are not significantly different. For ∀𝑗 , we
have 𝜑 𝑗 ≤ 𝜂𝑙 . It holds only when 𝑔𝑙 is the last subgraph to be

allocated, and before its allocation, the vertex sizes of all subgraphs

are evenly distributed, i.e., 𝑙 = 𝑝′ − 1. Thus, we have:

𝜔 ′ =
1

𝑝
(
𝑝′∑︂
𝑖=1

𝜂𝑖 +
𝑝∑︂
𝑗=1

𝜑 𝑗 ) ≤
1

𝑝
(
𝑝′∑︂
𝑖=1

𝜂𝑖 + (𝑝 − 1)𝜂𝑙 + 0)

< (1 + 𝑝 − 1

𝑙
)𝜔0 −

𝑝 − 1

𝑝
( 𝑝
′

𝑙
− 1)

< (1 + 𝑝 − 1

𝑙
)𝜔0 .

This theorem is proved. □

Theorem 3. For the index 𝑙 of the subgraph 𝑔𝑙 placed last into the
largest bin, there is a lower bound: 𝑙 ≥ 𝑝 − 1 + 𝑘 .

Proof. Now let us assume that 𝑙 < 𝑝 − 1 + 𝑘 . Let 𝑏𝑖𝑛𝑀 be

the largest bin, and let |𝑏𝑖𝑛𝑀 | denote the number of subgraphs in

𝑏𝑖𝑛𝑀 . Since initially all 𝑝 bins are empty and our greedy strategy

prioritizes filling smaller bins first, after distributing the first 𝑝

subgraphs, each bin contains exactly one subgraph. We have:

|𝑏𝑖𝑛𝑀 | ≤ (𝑙) − 𝑝 + 1 < (𝑝 − 1 + 𝑘) − 𝑝 + 1 < 𝑘.

At this point, 𝑏𝑖𝑛𝑀 is already the largest bin. Therefore, the sub-

graphs with indices 𝑙 + 1 and beyond will be allocated to the re-

maining bins to balance their sizes with 𝑏𝑖𝑛𝑀 , and 𝑏𝑖𝑛𝑀 will not

receive any more subgraphs. In other words, the final number of

subgraphs in 𝑏𝑖𝑛𝑀 is less than 𝑘 , which contradicts the definition

of the 𝑘-partitioning problem. □

Theorem 4. For the index 𝑙 of the subgraph placed last into the
largest bin, there is another lower bound: 𝑙 ≥ 𝑝′ − (𝑝 − 1)𝜂1.

Table 2: Statistics of Graphs: 𝑑 , size, and type denote the
average degree, file size, and graph type, respectively.

Name Graph |𝑉 | |𝐸 | 𝑑 Size Type

𝑡𝑤 twitter-2010 42 M 1.5 B 70.5 11 G Soc. Net.

𝑖𝑑 indochina-2004 7.4 M 192 M 40.7 1.5 G Mas. Net.

𝑖𝑡 it-2004 41 M 1.1 B 55.0 8.5 G Mas. Net.

𝑤𝑘 wikipedia 26 M 599 M 46.2 4.5 G Mas. Net.

𝑢𝑘 uk-2005 39 M 921 M 46.7 6.9 G Mas. Net.

𝑢7 uk-2007-05 105 M 3.7 B 70.7 28 G Mas. Net.

𝑢𝑢 uk-union 132 M 5.5 B 83.2 41 G Mas. Net.

𝑠𝑘 sk-2005 51 M 1.9 B 76.2 15 G Mas. Net.

𝑤𝑏 webbase-2001 116 M 993 M 17.2 7.4 G Mas. Net.

ℎ𝑤 hollywood-2011 2.0 M 229 M 230.7 1.8 G Misc. Net.

𝑎𝑟 arabic-2005 23 M 631 M 55.5 4.8 G Misc. Net.

Proof. Considering the subgraph set sorted in non-increasing

order of their sizes, all subgraphs allocated after𝑔𝑙 are used to fill the

size gaps between bins. Therefore, we can derive that

∑︁
𝜂𝑖<𝜂𝑙

𝜂𝑖 ≤
(𝑝−1) ∗𝜂𝑙 . Since

∑︁
𝜂𝑖<𝜂𝑙

𝜂𝑖 ≥ 𝑝′−𝑙 , we have: 𝑝′−𝑙 ≤ (𝑝−1)𝜂1. □

Combining Theorems 2, 3, 4, we conclude that:

𝜔 ′

𝜔0

< 1 + 𝑝 − 1

𝑚𝑎𝑥 (𝑝 − 1 + 𝑘, 𝑝′ − (𝑝 − 1) ∗ 𝜂1 )

4.4 Adaptive Selection of Splitting Factor
In this section, we discuss how to address the constraints 𝛼 and 𝛽

for vertex balance and edge balance, respectively.

Edge balance guarantee. For a specified parameter 𝛽 , the FSM

method initially sets the upper limit of edge capacity for small

subgraphs to 𝛽 times the average number of edges. It then uses a

single-balanced partitioner to generate smaller subgraphs.

Vertex balance guarantee. If the vertex balance across the sub-

graphs generated by the initial fine-grained splitting does not satisfy

the demand, it is difficult to achieve the balance effect by using the

merge method. FSM achieves the vertex balance by adjusting the

splitting factor 𝑘 . Notice that increasing 𝑘 improves vertex balance

but may also lead to a higher replication factor R. Therefore, for
the given parameter 𝛼 representing vertex balance, we can find the

smallest 𝑘 such that B𝑉 ≤ 𝛼 . This objective can be accomplished

through a binary search over the splitting factor. Specifically, if

the partitioning result for the current 𝑘 adheres to the require-

ment B𝑉 ≤ 𝛼 , the value of 𝑘 is decreased. Conversely, if the vertex

balance requirement is not satisfied, the value of 𝑘 is increased.

5 EXPERIMENTAL STUDY
5.1 Experimental Setting
Dataset. As shown in Table 2, we use 11 graphs from SNAP [22],

WebGraph [2–4], and networkrepository [32] in the experiments.

Methods. We compare the proposed method FSM with 11 parti-

tioners, including streaming, hybrid, and in-memory algorithms.

Degree information is taken as input for streaming algorithms.

• DBH [38]: DBH combines random partitioning with degree infor-

mation by assigning each edge to the hash partition correspond-

ing to the adjacent vertex with the lower degree.

• MDBGP [1]: A method based on gradient descent.
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Figure 6: Maximum, mean, and minimum vertex size by 11 partitioners with 𝑝 = 32.

• BPart [24]: BPart relaxes the vertex balance constraint of FENNEL

and then optimizes the dual balance based on this relaxation.

• PowerLyra [7]: PowerLyra proposes a Hybrid algorithm that

combines random hashing to allocate edges of low-degree and

high-degree vertices using different strategies.

• Hybrid-BL (TopoX) [23]: On the basis of Hybrid algorithm, Topox

incorporates fusion for low-degree vertices and fission for high-

degree vertices, introducing the Hybrid-BL algorithm.

• HDRF [31]: HDRF allocates each edge based on a scoring function

that takes into account both vertex degrees and the distribution

of vertices and edges in partitions.

• EBV [40]: EBV also utilizes a similar scoring function to allocate

edges, but it focuses more on dual balance.

• CLUGP [21]: CLUGP is pipelined into three steps: streaming

clustering, cluster partitioning, and partition transformation.

• HEP-1, HEP-10, HEP-100 [26]: HEP partitions high-degree edges

by using HDRF and partitions low-degree edges by using NE.

• 2PS [27]: 2PS algorithm consists of two stages: streaming clus-

tering stage and re-streaming stage. 2PS-HDRF is selected as the

competitor as it exhibits better partitioning performance.

• NE [39]: NE prioritizes expanding vertices with fewer external

connections to generate partitions incrementally.

• FSM-NE: FSM framework utilizes NE as the Fine-grained Split
partitioner and precise merge, shorted as FSM-N.

• FSM-HEP: FSM framework utilizes HEP-100 as the Fine-grained
Split partitioner and precise merge, shorted as FSM-H.

Evaluation Metric. We evaluate the performance of the methods

through three metrics: the replication factor R, vertex and edge

size coefficient variation 𝜎𝑉 and 𝜎𝐸 , and max vertex size factor

Ω𝑉 (Ω𝑉 =
max

𝑝

𝑖=1
|𝑉𝑖 |

𝑛/𝑝 ). The vertex balance B𝑉 is not reported as it

can be represented as Ω𝑉 /R. We also report the elapsed time over

downstream tasks: PageRank [29], connected component computa-

tion, and approximate diameter [18].

Reproducibility: We employ the implementation offered by [1,

7, 19, 21, 26, 27, 39] and re-implement EBV, FENNEL using C++. We

develop standalone versions of BPart and TopoX using C++.

We set up a distributed cluster with 8 machines, each having

Intel(R) Xeon(R) W-2135 CPU @ 3.70GHz and 64 GB of RAM. They

are set up with PowerGraph, running at full thread capacity, and

connected via Gigabit Ethernet.
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Table 3: Time (second) and memory (GB) overhead over graphs uu, u7, and sk with 𝑝 = 32.

DBH MDBGP BPart Hybrid-BL PowerLyra EBV CLUGP HDRF 2PS HEP-1 HEP-10 HEP-100 NE FSM-H(k=2) FSM-N(k=2)

uu

Time 395.447

TLE

1669.37 1144.15 470.985 2758.66

MLE

1021.64 1856.99 684.97 365.45 325.41 7777.95 644.09 10429.5

Memory 0.99 44.84 107.32 0.99 41.78 0.99 10.3 17.06 27.56 39.52 98.79 53.22 110.84

u7

Time 513.042

TLE

964.16 647.43 403.585 1746.23 5277.93 748.69 1284.61 420.09 238.64 247.48 3629.46 463.33 5971.39

Memory 0.79 30.93 72.29 0.79 28.48 31.50 0.79 8.27 12.41 20.01 26.80 67.91 36.11 76.32

sk

Time 172.645

TLE

484.36 307.08 227.753 801.82 2438.81 407.79 698.26 190.98 72.21 222.75 1869.25 203.66 1965.72

Memory 0.38 15.94 42.85 0.38 14.76 16.42 0.38 4.07 6.46 11.40 12.91 35.06 17.49 39.37

Table 4: Average 𝜎𝑉 and 𝜎𝐸 of partitioned graphs achieved by different methods.

DBH MDBGP BPart Hybrid-BL PowerLyra EBV CLUGP HDRF 2PS NE HEP-1 HEP-10 HEP-100 FSM-N(k=2) FSM-N(k=3) FSM-H(k=2) FSM-H(k=2)

𝜎𝑉 0.0%

-

20.01% 22.66% 0.1% 0.5% 32.02% 6.7% 29.08% 43.95% 19.88% 27.9% 33.31% 14.24% 6.95% 6.52% 3.67%

𝜎𝐸 0.0% 62.04% 32.29% 0.3% 4.46% 21.25% 0.0% 4.94% 12.43% 0.0% 0.0% 0.0% 0.08% 0.15% 0.0% 0.0%

5.2 Overall Partitioning Performance
Figure 6 illustrates the size factor of each partition that is generated

by 11 partitioners in detail, where the size factor of a partition is

defined as the ratio of its vertex size to the average vertex size. Due

to space limits, we exclude the results on 𝑖𝑑 and ℎ𝑤 . We evaluate

the performance of these partitioners based on the following three

metrics. The number of partitions 𝑝 is set to 32 by default.

5.2.1 Max Vertex Size Factor. The max vertex size factor, i.e., Ω𝑉 ,

can directly reflect themaximummemory overhead and com-
putation workload incurred by all machines in the cluster when

performing distributed tasks. A good edge partitioner should mini-

mizeΩ𝑉 , to ensure that large-scale distributed tasks can be executed

smoothly. The large R of streaming partitioners leads to their Ω𝑉

being inevitably large, as Ω𝑉 ≥ R.
As shown in Figure 6, NE, HEP, and 2PS perform similarly, with

a low R but a high Ω𝑉 . They perform even worse than HDRF on

graphs such as 𝑖𝑡 . Streaming partitioners such as DBH and EBV

are limited to high R, and their Ω𝑉 are also high. We also find that

HDRF performs better than other streaming partitioners. Hybrid-

BL tends to outperform PowerLyra on most graphs except graphs

like 𝑤𝑘 and 𝑡𝑤 . FSMs can achieve the lowest Ω𝑉 among the 11

graphs, especially for FSM-HEP. FSM-HEPs outperform FSM-NE

in most cases because HEP outperforms NE in terms of Ω𝑉 in the

Fine-grained Split phase initially.

5.2.2 Replication Factor. The replication factor, i.e., R, is positively
correlated with the communication volume between clusters.

We can observe that NE has the lowest R on these graphs. The

R of HEP depends on the value of 𝜏 . The larger the 𝜏 values, the

closer HEP is to NE, resulting in a smaller R. Conversely, if the
𝜏 is smaller, HEP becomes closer to HDRF, resulting in a larger

R. Among re-streaming partitioners, 2PS produces low R, while
CLUGP suffers from high replication factors. The R of Hybrid-BL

is lower than PowerLyra on most graphs except 𝑡𝑤 and𝑤𝑘 . The R
of FSM depends on the choice of the splitting factor 𝑘 . The smaller

the value of 𝑘 , the fewer subgraphs are split, which usually leads to

a smaller R. In most graphs, FSM achieves a R close to NE’s under

𝑝 = 32. Streaming partitioners have a shortcoming in terms of R
compared to others, with DBH having the largest R followed by

EBV and HDRF having the smallest R. They also have a significant

gap in R compared to other in-memory and hybrid partitioners.

5.2.3 Coefficient Variation of Vertex and Edge. The coefficient vari-

ation of vertex and edge are denoted as 𝜎𝑉 and 𝜎𝐸 , respectively.

They indicate the discreteness of vertex and edge number among

partitions, reflecting the degree of heterogeneity in memory over-
head and computation workload during distributed tasks. In a

homogeneous cluster, where the computing capabilities and com-

munication capabilities between nodes are identical, the computing

loads and memory overheads between machines should be as close

as possible during distributed tasks. As indicated in Table 4, stream-

ing partitioners usually have an advantage in terms of both 𝜎𝑉
and 𝜎𝐸 . DBH and PowerLyra exhibit the most outstanding 𝜎𝑉 be-

cause they both use hash for partitioning. EBV and HDRF follow

closely behind. In-memory partitioners such as NE and HEP can

only guarantee a low 𝜎𝐸 , but not 𝜎𝑉 . Hybrid-BL considers the fu-

sion of multi-hop neighbors, which makes it impossible to obtain

low 𝜎 on graphs with large degree differences. The dual-balanced

partitioner BPart needs to optimize the balance of vertices and

edges simultaneously, but it exhibits inferior performance in dual

balance. MDBGP fails to complete the partitioning within 72 hours

on all 11 graphs. FSMs achieve rather low 𝜎𝑉 on most graphs and

the effect becomes more significant as 𝑘 increases.

5.2.4 Time and Memory Overhead. Due to the space limit, we

present the time and memory overhead on the three largest graphs

𝑢𝑢, 𝑢7, and 𝑠𝑘 . The results are shown in Table 3, where ‘MLE’

and ‘TLE’ represent ‘Memory Limit Exceeded’ and ‘Time Limit

Exceeded’ (the maximum partitioning time is set to 72 hours), re-

spectively. Among the partitioners, MDBGP (40-thread partitioning)

takes more time than other methods due to its involvement in a

O(𝑛2) intersection point operations. In contrast, the streaming al-

gorithms demonstrate the fastest partitioning time. In terms of

memory overhead, the streaming algorithms PowerLyra, DBH, and

HDRF exhibit significant advantages, while the adjacency list-based

algorithms such as BPart, NE, and Hybrid-BL require more mem-

ory. EBV sorts the edges according to the degree, which results in

higher memory and time overhead compared to DBH and HDRF.

The hybrid algorithms (HEPs) show intermediate performance in

both time and memory overhead. The memory and time overheads

of FSMs depend on the algorithms chosen for the Split Phase. From

Table 3, it can be observed that FSMs roughly approximate the

employed algorithms in terms of both time and memory.
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using NE and HEP, respectively, for partitioning with 𝑘 = 3.

Table 5: Effects of 𝛼 and 𝛽 on the partitioning quality.

𝛼 1.5 1.10 1.05 1.03 𝛽 1.35 1.1 1.05 1.03

k 3 5 7 8 k 5 5 6 6

B𝑉 1.32 1.10 1.05 1.02 B𝑉 1.02 1.02 1.01 1.02

B𝐸 1.00 1.00 1.00 1.00 B𝐸 1.35 1.10 1.05 1.03

R 1.11 1.12 1.12 1.13 R 1.11 1.11 1.12 1.12

5.3 Effect of Parameters
5.3.1 Effect of the Number of Partitions 𝑝 . In this study, we apply

four state-of-the-art partitioners (NE, HEP, METIS, and FENNEL)

to partition two graphs,𝑤𝑏 and ℎ𝑤 , with 𝑝 ranging from 8 to 128.

As shown in Figure 7, it is evident that all the values of R increase

with the increase in 𝑝 . This can be attributed to the fact that as the

number of partitions 𝑝 increases, there is a corresponding increase

in the number of vertices at the partition boundaries. Consequently,

this leads to unavoidable increases in the value of R.
When analyzing the trends of the two graphs separately, we

observe that increasing the value of 𝑝 results in a significant rise

in R for the ℎ𝑤 graph. Particularly, for METIS, at 𝑝 = 128, its R
has already reached around four times that of 𝑝 = 8. In contrast,

the R for the𝑤𝑏 graph remains consistently close to 1.0 across the

entire range of 𝑝 . For two FSM partitioners, we can observe that as

𝑝 increases, FSM-N(𝑘 = 3) and FSM-H(𝑘 = 3) consistently achieve

R that are similar to NE and HEP.

5.3.2 Effect of the Splitting Factor 𝑘 . Fast merge prioritizes time ef-

ficiency, while precise merge often achieves better partition quality.

In this study, we evaluate the effects of these two merge algorithms,

using HEP-100
1
as the partitioner in the Fine-grained Split phase

with 𝑝 = 32 and 𝑘 = 2, 3, 4, 5, 6. We evaluate them based on merging

quality (Ω𝑉 and R) and merging time. The results on graphs 𝑠𝑘 and

𝑡𝑤 are presented in Figure 8.

When using the naive HEP-100 for partitioning, it achieves a

value of Ω𝑉 of 1.73 and 2.92 on 𝑠𝑘 and 𝑡𝑤 , respectively. With the

FSM framework, the R and Ω𝑉 obtained from the Precise Merge
are usually lower than those from the Fast Merge. We observe that

as 𝑘 increases, FSM consistently maintains R and Ω𝑉 at similar

levels, resulting in a favorable B𝑉 . In particular, the Precise Merge

1
NE cannot guarantee edge balance when 𝑝 is large.
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Figure 8: The merge effect and time of FSM-H v.s. 𝑘 , where
𝑝 = 32 and 𝑘 = 1 indicates partitioned by naive HEP-100.

algorithm achieves an average B𝑉 of 1.02 and 1.12 on the graphs 𝑠𝑘

and 𝑡𝑤 , respectively. For the 𝑠𝑘 graph (other similar graphs like 𝑖𝑑 ,

𝑖𝑡 , 𝑎𝑟 , and𝑤𝑏), we find that FSM achieves a triple one score, where
all B𝐸 , B𝑉 , and R are close to 1. This is close to the theoretical

optimum, as any partition must satisfy R > 1when 𝑝 > 1. The time

gap between the two merge algorithms increases with 𝑘 . However,

even for a graph like 𝑠𝑘 with 51M vertices and 1.9B edges, the

Precise Merge with 𝑘 = 5 only takes 60 seconds.

5.3.3 Effect of 𝛼 and 𝛽 . We discuss how the dual-balanced con-

straints, 𝛼 and 𝛽 , affect the quality of FSM partitioning. To study

the effect of 𝛼 , we vary 𝛼 from 1.03 to 1.50 by fixing 𝛽 = 1. Table 5

presents the results on graph 𝑢𝑘 . It shows that stricter vertex bal-

ance requirements (i.e., smaller 𝛼) necessitate a larger 𝑘 , at the same

time it also results in higher replication factors R. To study the

effect of 𝛽 , we vary 𝛽 from 1.03 to 1.35 by fixing 𝛼 = 1.03. Compared

to the case of fixing 𝛽 = 1, relaxing the constraint on 𝛽 makes it

easier to achieve the target of 𝛼 = 1.03. It is worth noting that FSM

maintains a lower replication factor R as well.

5.4 Results of Distributed Tasks
5.4.1 Accelerating Distributed Tasks. To evaluate the performance

of FSM on downstream tasks, we conduct PageRank (PR), connected

components (CC), and approximate diameter (AD) on a cluster of

𝑝 = 8 machines. PR is fixed to 100 iterations to force all vertices to

be active so that we can test the effect under heavy communication

overhead. CC is implemented based on label propagation, with

fewer active vertices in each iteration. AD estimates the diameter by

computing reached vertex pairs for each hop [18], with all vertices

being re-activated in each hop. We fix the number of hops to 10 due

to its long elapsed time. We repeat each experiment 3 times and take

the average as the result, ensuring that the standard error of the

experiment time is less than 5%. For tasks that run out of memory,

we label them as “MLE”. For tasks that cannot be finished within

12 hours, we abort them and label them as “TLE”. Tables 6, 7, and 8

list the results, where “-” indicates that the partitioning cannot be
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Table 6: Runtime of distributed PageRank (sec). The lowest runtime is highlighted in bold, second lowest is underlined.

Graph DBH MDBGP BPart Hybrid-BL PowerLyra EBV CLUGP HDRF 2PS HEP-1 HEP-10 HEP-100 NE FSM-N(k=2) FSM-N(k=3) FSM-H(k=2) FSM-H(k=3)

ar 329.23 361.90 255.27 226.50 217.80 222.30 235.13 216.23 173.60 179.47 180.50 176.00 192.70 166.53 159.47 164.33 173.37

hw 124.37 111.43 108.53 99.67 87.80 88.30 102.13 90.27 85.93 79.37 78.50 73.63 74.87 72.07 71.40 68.17 70.43

id 167.77 139.90 121.40 105.57 94.27 104.67 104.70 105.30 99.03 97.77 98.53 95.43 101.40 92.83 97.87 93.27 93.60

it 622.07 - 476.33 390.33 383.30 381.67 371.17 290.50 267.77 309.73 333.17 291.90 376.77 282.47 264.97 249.97 265.77

sk 767.60 - 828.17 477.60 523.47 510.20 412.47 436.27 373.60 334.30 337.63 323.10 341.60 332.67 311.50 308.17 308.10
tw 535.63 - 1028.97 MLE 424.90 479.10 843.23 438.57 494.80 422.40 405.17 394.40 395.80 423.13 420.50 392.93 398.83

u7 1527.50 - 1173.73 893.07 871.33 990.80 759.27 732.53 496.13 527.70 567.93 595.07 739.93 550.30 534.70 462.67 449.37
uk 648.80 - 448.30 368.53 421.50 377.97 314.10 315.60 281.83 307.20 294.83 294.33 321.50 277.60 261.90 274.53 259.63
uu 1892.30 - 1080.83 1371.20 MLE 1398.83 - 829.63 649.93 691.83 781.97 782.20 895.90 685.37 664.90 631.90 606.83
wb 1609.17 - 914.70 1121.27 866.33 921.30 872.10 853.97 733.93 836.27 765.97 748.83 782.23 778.20 741.77 699.17 699.30

wk 305.43 522.57 416.97 405.00 196.97 261.53 352.53 247.13 240.40 227.47 192.60 193.37 200.67 199.60 198.60 198.97 197.53

Table 7: Runtime of connected components (sec). The lowest runtime is highlighted in bold, second lowest is underlined.

Graph DBH MDBGP BPart Hybrid-BL PowerLyra EBV CLUGP HDRF 2PS HEP-1 HEP-10 HEP-100 NE FSM-N(k=2) FSM-N(k=3) FSM-H(k=2) FSM-H(k=3)

ar 46.77 58.30 44.23 40.30 38.53 41.93 43.27 35.97 34.00 32.07 33.60 33.23 37.33 31.13 29.53 28.67 33.03

hw 12.73 14.03 14.17 12.40 10.37 10.90 12.00 10.30 9.87 9.57 9.20 9.17 8.47 9.37 8.33 8.83 7.70
id 24.30 25.87 20.87 20.07 16.80 21.37 19.97 17.27 18.23 18.50 18.57 19.47 20.70 17.97 17.33 17.77 16.87

it 77.90 - 80.07 75.47 62.97 65.70 66.30 50.37 55.87 49.07 51.57 52.87 60.87 49.90 48.43 46.17 43.50
sk 76.80 - 90.00 71.33 81.63 70.90 77.03 53.53 60.70 47.33 44.00 45.17 53.10 46.90 47.37 45.03 45.00

tw 64.13 - 103.67 MLE 63.73 66.43 100.97 61.23 77.03 57.27 56.80 55.47 61.83 56.33 55.83 50.57 51.63

u7 173.50 - 179.20 154.43 157.73 169.50 147.77 125.87 114.40 113.27 118.87 113.73 123.10 110.47 110.90 110.20 108.77
uk 104.90 - 83.60 82.23 86.23 83.23 71.63 61.80 64.20 57.47 67.37 66.10 73.20 57.57 54.70 57.50 61.20

uu 294.13 - 232.13 269.50 MLE 277.43 - 190.90 197.20 186.60 192.93 182.23 199.00 180.97 180.27 174.67 174.93

wb 509.60 - 444.87 473.73 423.10 480.37 444.03 430.77 409.97 399.53 432.57 421.30 432.13 412.83 396.10 415.50 418.57

wk 49.53 74.57 65.87 64.47 34.43 45.67 50.47 44.07 42.60 43.13 40.47 42.03 41.13 37.40 36.80 37.17 41.53

Table 8: Runtime of approximate diameter (sec). The lowest runtime is highlighted in bold, second lowest is underlined.

Graph DBH MDBGP BPart Hybrid-BL PowerLyra EBV CLUGP HDRF 2PS HEP-1 HEP-10 HEP-100 NE FSM-N(k=2) FSM-N(k=3) FSM-H(k=2) FSM-H(k=3)

ar 954.67 1189.33 779.67 759.00 910.82 725.00 902.00 651.67 575.67 535.67 528.67 531.67 586.00 470.33 439.00 452.67 457.00

hw 233.00 292.00 200.00 225.00 239.91 149.67 211.33 133.33 162.00 130.00 144.67 127.67 131.33 112.33 111.33 116.33 115.33

id 304.00 477.00 229.00 244.00 249.54 284.00 189.00 200.67 199.33 167.00 185.33 210.00 339.67 153.00 146.00 144.00 146.00

it 1909.33 - 1543.00 1589.00 1705.89 1417.33 1684 1050.00 1042.00 1006.33 1073.33 1065.67 1376.67 954.67 861.33 851.67 867.67

sk 3243.33 - 2792.67 2423.00 2713.50 2131.67 2550.33 1859.33 1540.00 1393.67 1316.67 1333.33 1717.00 1414.67 1261.33 1256.67 1281.33

tw 2027.00 - 4324.33 MLE 1963.02 1900.67 4165.67 1713.00 2546.67 1634.67 1633.33 1816.67 2077.67 1611.33 1713.33 1487.33 1569.67

u7 MLE - MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE TLE 4326.00
uk 1835.00 - 1185.67 1395.33 1940.11 1444.67 1145.67 946.67 980.67 918.00 1103.33 1157.33 1174.33 846.33 753.33 858.67 771.67

uu MLE - MLE MLE MLE MLE - MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE

wb MLE - MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE MLE 4587.33 4542.33 2041.33
wk 964.67 2363.33 1759.33 2286.33 702.78 918.67 1495.33 878.00 859.00 792.00 757.67 734.33 754.00 700.00 714.33 710.67 727.33

finished within 72 hours or exceeds the memory limit during the

partitioning process.

Overall elapsed time.We conclude that using FSM-N(𝑘 = 3) or

FSM-H(𝑘 = 2) generally results in the shortest elapsed time on most

graph tasks. Although NE achieves the lowest R, its time efficiency

is generally not as good as HEP and even falls behind the streaming

partitioner HDRF (on the 𝑖𝑡 graph). HEP demonstrates excellent

performance in PR and CC tasks, with overall performance second

only to FSM. Among the streaming partitioners, HDRF exhibits the

best performance, followed by EBV, and DBH performs the worst.

The two re-streaming algorithms show impressive performance on

graphs like 𝑖𝑡 . This is likely due to the presence of clustering in

graphs, which allows these algorithms to maintain good balance

while achieving low R. PowerLyra demonstrates good performance

on graphs such as 𝑡𝑤 and𝑤𝑘 , while Hybrid-BL performs better on

graph𝑤𝑏.

We note that the improvement of FSM-N over NE is impressive.

The maximum improvement on PR and CC tasks is 29.7% and 25.3%,

respectively. Similar improvement is also observed in FSM-H.

Paging Fault due to vertex imbalance. In distributed environ-

ments with limited memory, large graph processing tasks often

experience frequent page faults. In some cases, although the graph

processing task does not exceed memory capacity, the memory us-

age approaches 100%, increasing the likelihood of page faults. These

page faults contribute to higher CPU utilization by the kswapd0
process, which is used for swapping pages. For instance, the AD

tasks on graph𝑤𝑏 partitioned by FSM-N(k=3) and FSM-H(k=2) are

adversely affected by increasing page faults and additional CPU uti-

lization, resulting in a long elapsed time. Hence, in distributed tasks,
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the memory overhead on the largest partition should be minimized,

even though it may not exceed memory.

5.4.2 Guidance on Applicability. Based on extensive experimen-

tal results on various datasets, we have summarized the following

scenarios where the FSM framework is applicable: (I) Graphs with

rich communities and high-degree vertices, such as𝑤𝑏, 𝑖𝑡 , 𝑢𝑢, and

𝑖𝑑 . These communities and high-degree vertices can facilitate the

fine-grained splitting phase of FSM, providing small replication

factors even for a large number of partitions. (II) Downstream tasks

that require high memory usage. Tasks such as triangle counting

and approximate diameter often involve complex data structures

that consume a significant amount of memory. This can lead to

memory bottlenecks on individual machines. (III) When the cluster

size is small, each machine needs to handle a large computational

load, and the load imbalance in terms of computation and mem-

ory becomes more prominent. Using FSM to balance the load can

significantly enhance the performance of tasks on small clusters.

6 RELATED WORK
In-memory partitioners. One of the most established categories

of in-memory partitioning algorithms is multilevel partitioning al-

gorithms, such as METIS [19], KaFFPa [33], and Scotch [30]. These

algorithms emphasize cut size and vertex balance but tend to per-

form poorly in terms of edge balance. NE [39] is a typical edge

partitioning algorithm that achieves excellent R by prioritizing the

expansion of vertices with fewer external connections. HEP (along

with NE++) [26] and DNE [15] adopt the NE idea and primarily

focus on optimizing partition efficiency and scalability but often

neglect the issue of vertex balance.

Streaming partitioners. Streaming algorithms [35] can be further

classified into stateful and stateless categories. Stateful algorithms

typically evaluate vertices or edges using specific scoring functions

and allocate them to partitions with the highest scores. HDRF [31]

prioritizes cutting high-degree vertices and performs well on power-

law graphs. However, the scoring function does not consider vertex

balance. FENNEL [36] is a vertex partitioning algorithm that takes

into account both the number of adjacent and non-adjacent ver-

tices. However, it does not consider edge balance. 2PS [27] and

CLUGP [21] are two re-streaming algorithms. They utilize cluster-

ing algorithms to proactively gather global information, which aids

in subsequent re-partitioning. The difference lies in the clustering

strategy used. These re-streaming algorithms tend to yield better

partitioning results but often sacrifice balance.

Grid [17] is a hashing-based edge partitioning algorithm that

takes into account the load balancing of partitions. DBH [38] is

a degree-based hashing edge partitioning algorithm, where the

hashing function incorporates the idea of “high-degree vertices

are preferentially replicated”. Random partitioning [35] randomly

assigns edges or vertices to partitions.

Dual-balanced partitioners. Zhang et al. propose the edge parti-

tioning algorithm EBV [40], which incorporates both vertex and

edge load as well as vertex replication into the scoring function and

thus achieves a good dual balance. However, like other streaming

algorithms, it can only achieve sub-optimal R. Lin et al. extend

the FENNEL algorithm and introduce a vertex partitioning scheme

called BPart [24]. It achieves dual balance through multiple rounds

of re-partitioning and combining. However, it requires simulta-

neous optimization of both vertex and edge balance during the

combining phase and only considers extreme merges (merging the

current maximum with the minimum), without guaranteeing an

approximation ratio. In terms of R, BPart incurs significant losses
compared to FENNEL, while FENNEL is inferior to METIS in R.
Different from the discrete algorithms, MDBGP [1] uses Projected

Gradient Descent to balance vertex-edge load. It exhibits high paral-

lelism and emphasizes multi-dimension balance. However, it suffers

from significant complexity and falls short in cut size, performing

even worse than FENNEL.

Different from these methods, FSM employs an effective two-

phase method that can benefit from any SOTA single-balanced

partitioners and achieve remarkable replication factor.

Postprocessing algorithms. ParE2H and ParV2H [9] are task-

specific algorithms that refine given partitions to shorten the elapsed

time for specific tasks. However, they usually require higher train-

ing costs and are limited to optimizing a particular task. In contrast,

FSM achieves fast partitioning and provides acceleration benefits for

a wide range of tasks. Additionally, FSM generates high-quality par-

titions with dual balance. LS [14] adjusts edges and blocks of given

partitions to achieve high-quality partitions under edge balance.

However, similar to other edge partitioners, LS primarily focuses on

reducing R, which can potentially lead to a deterioration in vertex

balance during the adjustment process.

Dynamic partitioners. Dynamic partitioners are used for partition-

ing dynamic graphs. They typically achieve dynamic optimization

by migrating vertices and edges. Based on two optimization objec-

tives: structural changes and computational load changes, dynamic

partitioners can be divided into two categories. The former focuses

on optimizing the dynamic graph structure, e.g., Leopard [16], Her-

mes [28], and Planar [41]. The latter considers the workload of the

graph computation, e.g., Mizan [20] and CatchW [34].

FSM can be also extended to dynamic scenarios. For dynamically

updated graphs, a buffer can be set up to cache the incoming up-

dates. The buffer can then be partitioned using a single-balanced

partitioner, and the resulting partitions can be merged with the

existing bins using the Merge operation. This allows for the incor-

poration of dynamic updates while maintaining the dual balance.

7 CONCLUSION
In this paper, we introduce a lightweight and efficient partitioning

framework FSM that consists of two phases, namely fine-grained
splitting and subgraph merging. The experimental results on large-

scale graphs have demonstrated that the proposed framework FSM

achieves a remarkable replication factor while achieving both ver-

tex and edge balances, outperforming state-of-the-art partitioners.

Furthermore, the performance of downstream tasks can be signifi-

cantly improved benefiting from the partitioning result.
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