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Abstract
Graph pattern mining (GPM) is an important problem in graph processing. There are many parallel frameworks for GPM,
many of which suffer from low performance. GPU is a powerful option for accelerating graph processing, but parallel GPM
algorithms produce a large number of intermediate results, limiting GPM implementations on GPU. In this paper, we present
GAMMA, an out-of-core GPM framework on GPU, that makes full use of host memory to process large graphs. GAMMA
adopts a self-adaptive implicit host memory access approach to achieve high bandwidth, which is transparent to users. It
provides flexible and effective interfaces for users to build their algorithms. We also propose several optimizations over
primitives provided by GAMMA in the out-of-core GPU system, as well as optimizations to perform set intersections since
they are widely used in GPM. Experimental results show that GAMMA scales better with graph size over the state-of-the-art
approaches—by an order of magnitude—and is also faster than existing GPM systems.

Keywords Graph pattern mining · Large graphs · GPU

1 Introduction

The importance of graph algorithms in many fields is well-
recognized: chemical engineering [15], social networks [14,
57] and financial markets [17]. Significant attention has been
paid to graph patternmining (GPM) tasks that discover graph
patterns satisfying some criteria [12, 16, 50, 51, 63]. This
class of workloads involves subgraph matching (SM) [59],
frequent pattern mining (FPM) [3, 18] and k-clique (kCL)
computation [55]. GPM algorithms usually produce a large
number of intermediate results, making them more chal-
lenging. For example, exploring length-4 embeddings over
cit-Patent (a dataset with 16.5M edges) produces 13.5 billion
intermediate results [63]. In this paper, we focus on efficient
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computation of GPM algorithms using hardware accelera-
tors.

There are two different roadmaps to develop GPM algo-
rithms. One is to design an efficient graph algorithm for a
specific task, such as subgraph matching [22, 52, 59] and
FPM [3, 18]. The second is to define a generic frame-
work, which incorporates efficient primitives that can be
used to specify GPM algorithms. These primitives are tuned
to address the computational commonalities among GPM
tasks such as their computationally heavy nature, their ten-
dency to perform random access to data, and the production
of massive intermediate results by many well-known GPM
algorithms. In this paper we follow the second approach and
developGAMMA(graph patternmining framework for large
graphs), a framework that incorporates primitives that can be
efficiently executed on GPUs and can be used to implement
GPM algorithms such as FPM and SM.

Many GPM frameworks have been proposed [12, 16, 27,
50], most of which are CPU-based. They generally have
unsatisfactory performance due to the exponential search
space of GPM and limitations of CPU-only computation.
For example, Arabesque [50], a state-of-the-art GPM frame-
work, spends 1.65h to find all length-3 frequent patterns in
a graph with one million edges.

GPM is a class of algorithms that can benefit from hard-
ware assistance, specifically GPU processing. GPU provides
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massive parallelism with a large memory bandwidth com-
pared to a CPU, making it suitable for GPM. Most existing
GPU-based works focus on designing specific GPM algo-
rithms [26, 55, 59] rather than a comprehensive framework.
To the best of our knowledge, Pangolin [12] is the only
GPU-based GPM framework. It works on the assumption
that graphs and intermediate results can be resident in GPU
device memory. However, as noted earlier, GPM algorithms
often produce extensive intermediate results, andGPUdevice
memory is quite limited (e.g., 16 GB for Tesla V100). Thus,
Pangolin cannot deal with large graphs.

To deal with large graphs on GPU, existing works [26, 29,
41, 45] partition graphs and explicitly transfer them to GPU
for processing. However, this approach requires task-specific
partitioning strategies, and incurs redundantmemory transfer
and extra data reorganization costs. It is desirable to avoid
these overheads.

The goal of this paper is to design an out-of-core GPM
framework for graphs that are too large to fit GPU device
memory. We have two main challenges: one is how to store
and access large graph data and intermediate results onCPU-
GPU heterogeneous platform; the other is to address the
computational bottlenecks due to processing large graphs on
out-of-core GPU systems.

To address the first issue, we adopt the implicit host mem-
ory access approach,where hostmemory and devicememory
become a unified address space. This style of access assures
that the data required by the device can be fetched from
host memory at run-time. There are two kinds of implicit
memory access modes with different characteristics: unified
memory and zero-copy memory. Accessing unified memory
may cause additional data migration, but it has buffers in the
device; zero-copy memory has no buffer in the device, and
has little migration cost. Thus, unified memory is friendly to
data with good temporal and spatial locality, while zero-copy
memory is suitable for isolated and infrequently accessed
data. Neither works particularly well for GPM because of the
diversity of access patterns to graphs. In this paper, we pro-
pose a self-adaptive access approach based on a quantitative
model of the access. We also design data structures consid-
ering data locality to smooth the bandwidth gap between
host memory and device memory. Our proposed data layout
solution can also be generalized to multi-GPU architectures:
the host accommodatesmain data structures, andGPUs share
nothing. Therefore, GPUs work independently, and the num-
ber of GPUs can scale up conveniently.

The second challenge is that the computational complexity
of GPM algorithms increase quickly as the graph size grows,
and the performance issues of in-core GPU systems become
evenmore serious in out-of-coreGPUplatforms (see Sect. 4).
These include the uncertain amount of output produced by
threads and the large amounts of computational redundancy,
and sorting data whose size exceeds device memory is a new

challenge. We develop three optimizations to the primitives
to address these issues: (1) design a dynamic device memory
allocation strategy to address the uncertainty in the extension
primitive, (2) group multiple extension processes to reduce
redundant computation, and (3) implement an efficient sort
method when the key size exceeds device memory.

Set intersection is widely used in many GPM algorithms
[23]. We propose scenario-specific optimizations to further
reduce GPM’s computational complexity. Set intersection
in GPM has different features: the number of lists to be
intersected are different; the length of those lists vary a lot;
sometimes a single list needs to be intersected with a number
of lists multiple times. We take those features into considera-
tion, and give different strategies to improve the performance.

Our self-adaptive memory access approach enables GPU
to process much larger graphs than what is currently pos-
sible; the proposed optimizations to primitives guarantee
better performance and better scalability. These are our main
contributions, and they are incorporated into GAMMA. To
the best of our knowledge, GAMMA is the first out-of-core
GPM framework to deal with large graphs that are beyond
the capacity of device memory (see Table 1). Program-
ming GPM algorithms within GAMMA frees users from
massive programming details, including complicated host
memory access, maintaining large-scale intermediate results
and primitive optimizations.We demonstrate this by building
three GPM algorithms.

Experimental results show that GAMMA can support
billion-scale graphs and has an order of magnitude better
scalability in graph size than other GPM frameworks on
GPU.

To summarize, we make the following contributions:

• We propose a novel GPM framework on GPU, called
GAMMA, which uses host memory to deal with large
graphs. It provides flexible and effective interfaces for
users to build their algorithms.

• Webuild a self-adaptivemethod to determinewhen to use
alternative modes of accessing host memory (unified and
zero-copy), each of which is suitable for different situa-
tions. This helps to smooth the bandwidth gap between
host memory and device memory. This memory usage
strategy is also convenient to scale up tomulti-GPUarchi-
tecture.

• We propose three optimizations to existing GPM frame-
work primitives based on the GPU architecture and graph
mining tasks. These optimizations target large graphs.

• According to the features of set intersections in GPM, we
propose different optimizations to improve their perfor-
mance in this scenario.

• We conduct extensive experiments. The results show that
GAMMA has great improvements in scalability and per-
formance compared with state-of-the-art works.
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Table 1 Categories of different
graph mining works

GPU CPU
in device Out of device

Frameworks Pangolin [12] GAMMA Peregrine [27],
Kaleido [63],
Arabesque [50],
Fractal [16]

Specific algos GSI [59] Guo et al. [22] Sun et al. [49]

2 Related work

GPU-based graph computing has attracted considerable
attention in both academia and industry [12, 34]. Generally,
there are two different graph computing workloads. One is
the traversal-based, such as BFS [37] and shortest path com-
putation [33], while the other one is called graph pattern
mining (GPM) tasks including subgraphmatching (SM), fre-
quent subgraph pattern mining (FPM) and k-clique (kCL)
computation. One fundamental difference between them is
that the latter always generates a large number of intermedi-
ate results while the former’s space complexity is linear with
respect to the original graph size. In this work, we focus on
GPU-based GPM computations. As mentioned earlier, there
are two approaches. One is to design and optimize specific
GPM algorithms and the other one is to develop a generic
GPM frameworks. We review them briefly in the follow-
ing subsections. We also discuss host memory access and
multi-GPU solution for graph computing in Sect. 2.3 and 2.4,
respectively, since GAMMA is an out-of-core system and
scales to multi-GPU architecture.

2.1 Specific GPM algorithms on GPU

There are many existing specific GPM algorithms on GPU,
including triangle counting [24, 26, 41, 58] and subgraph
matching [22, 52, 59]. Related works of FPM and kCL [4]
onGPUaremuch fewer than those of the first two algorithms,
because a large number of intermediate results is not suitable
for GPU.

There are some specific algorithmsof large graphs onGPU
[22, 26, 45]. They all adopt dedicated methods for graph par-
tition or reorganization, which do not work for all algorithms
and bring about extra cost.

2.2 Existing GPM frameworks

Existing GPM frameworks are designed on disk-involved
platforms [35, 51, 63], distributed systems [8, 16, 50],
multi-core CPU systems [27] and GPU [12]. These works
distinguish graph mining algorithms (such as kCL, SM and
FPM) from graph traversal algorithms, and build universal
solutions for them.

Kaleido [63] is a single-machine GPM system. It uses
a lightweight checking strategy to solve labeled graph iso-
morphism problems. Arabesque [50] is a distributed system
that defines a high-level filter-process computational model.
Rstream [51] is a single-machine GPM system based on X-
stream [44]. Peregrine [27] is a pattern-aware multi-core
GPM system on CPU, and it manages to reduce unneces-
sary computations by carefully designing exploration plans.
Peregrine [27] is a state-of-the-art GPM framework on CPU,
which uses multi-threads to improve performance and is
superior to other GPM systems, including Arabesque [50],
Rstream [51] and Gminer [8]. Therefore, we use Peregrine
as the multi-thread CPU baseline.

Pangolin [12] is the first GPM framework on GPU and
incorporates some optimizations in subgraph isomorphism
check to reduce memory usage and exploit data locality.
However, since Pangolin is an in-core system that only
uses GPU memory, it cannot process GPM tasks on even
moderate-size graphs. PBE [22] is a subgraph enumeration
solution on GPUs, which divides large graphs into parti-
tions that can fit into GPU memory to scale to enormous
graphs beyond GPU memory. PBE processes one partition
at-a-time and proposes a method to enumerate matched sub-
graphs across multiple partitions. We include PBE in our
evaluation on kCL and SM. G2Miner [10] is the first to run a
GPU-based GPM framework on multiple GPUs, which is an
optimization of Pangolin by combining breadth-first search
and depth-first search to achieve a balance between inter-
mediate result size and parallelism. G2Miner also proposes a
series ofGPU-related optimization techniques and a schedul-
ing policy for multiple GPUs.

The most up-to-date GPM framework on GPUs is Graph-
Set [47]. It focuses on eliminating control flows and reducing
computation overhead in user-defined GPM algorithms.
GraphSet accelerates these algorithms by transforming con-
trol flows and redundant computation into set-based opera-
tions. GraphSet has the best computational performance in
existing systems but can only support in-core processing and
fails to support graphs larger than GPU memory.

We experimentally compare our framework (GAMMA)
with these existing solutions in Sect. 7. Generally, GAMMA
can support larger graphs and also achieve better perfor-
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mance in GPM tasks. More experimental results are given
in Figs. 18, 20, 23, 37, and 38.

2.3 Host memory access on GPU

There are two methods for GPU processing of graphs larger
than device memory. The first one is explicit data transfer
[26, 41, 45]: the required data are reorganized and trans-
ferred to device memory in batches, then GPU can directly
access data on device. In this condition, data reorganization
is time-consuming, and also leads to extra data transfer and
low GPU utilization. The second one is on-demand memory
access [20, 29] using unified memory and zero-copy mem-
ory. This method takes device memory and host memory
as unified memory space, and has significant advantages in
the simplicity of programming, thus more suitable to design
frameworks. Many works have focused on improving the
performance of unified memory or zero-copy memory by
compressing graphs [19], reordering graphs [19, 20], coa-
lesced and aligned memory access [39], or hardware-level
schedules [32, 64]. To the best of our knowledge, GAMMA
is the first work to propose a hybrid access strategy based on
analytic model in a framework, which is a significant contri-
bution to our work.

2.4 Multi-GPU-based graph computing

There are some works that implement multi-GPU solutions
for graph processing. Most graph processing frameworks
focus on graph traversal algorithms: GUM [36] focuses
on the workload imbalance in graph traversal problems,
where graphs are transferred amongGPUsdynamically using
work stealing strategy; Digraph [62] proposes a path-based
asynchronous execution model to accelerate iterative graph
processing among multiple GPUs. It first partitions the orig-
inal graphs into many subgraphs, then finds asynchronous
paths in those subgraphs. Generally, graph partitioning is
more friendly to traversal-based graph algorithms, because
they have regular access patterns and the access to inter-
partition edges (vertices) is limited in each iteration.

There are also some specific GPM implementations in
multi-GPU platforms: PBE [22] is a subgraph matching
implementation, which uses a graph partition approach
(METIS [28]) to minimize the number of inter-partition
edges. It introduces special techniques to deal with inter-
partition matches. TRUST [41] is a triangle counting imple-
mentation, which partitions the original with a hash-based
method to the source and destination of edges, and counts tri-
angles in every two partitions on GPU. In conclusion, GPM
has unpredictable access patterns; therefore, it is usually
necessary to adopt an algorithm-specific graph partitioning
method or execution design for multi-GPU implementation.

Fig. 1 GPU architecture

3 Background

3.1 Heterogeneous system architecture

The architecture of a heterogeneous CPU+GPU computing
system is shown in Fig. 1.

Software. A warp is a group of threads that run in Sin-
gle Instruction Multiple Threads (SIMT) manner. Therefore,
synchronization in a warp does not introduce extra cost. A
thread block consists of several warps, and it is the largest
unit for thread communication. Thread block synchroniza-
tion has a much higher overhead than warp synchronization.

Hardware. A GPU has thousands of cores that share
devicememory. Sharedmemory is on-chipmemorymanaged
by thread blocks. It is limited in size (about 48 KB on V100
and 192 KB on A100 per thread block) but has low access
latency. We use shared memory to optimize set intersection,
an important primitive in GPM algorithms (see Sect. 6.1).
Device memory is connected to host memory via PCIe. Data
transfer between the host (CPU) and device (GPU) is a
critical part of GPU-optimized algorithms. Most graph algo-
rithms are memory-intensive, so the memory usage has a
great influence on the overall performance.We briefly review
the features of host memory and shared memory in Sect. 3.2
and 3.3, respectively.

3.2 Host memory access

It is traditional in processing large graphs to use explicit
memory transfer to move each portion of the graph to the
device memory (D1 in Fig. 1). This can be achieved in two
ways. The first approach [22, 26, 29, 41] is partitioning the
large graph such that each partition fits into device memory,
and partitions are iteratively loaded to device memory and
processed. This method introduces extra data transfer cost
and reduces the utilization of GPU. Furthermore, this task-
specific data partitioning solution cannot support a universal
GPM framework. The second solution is a fine-grained data
transmissionmethodproposedbySubway [45]. It collects the
required data, reorganizes them into a compressed structure
in the host, and transfers them to the device. Obviously, data
extraction and reorganization on CPU are costly. Therefore,
explicit memory transfer cannot be applied to large-scale
GPM on an out-of-core GPU platform.
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Implicit memory access unifies host memory and device
memory into the same address space, and the required
data can be fetched from CPU on-the-fly. This method is
transparent to users and more suitable for general-purpose
tasks. Furthermore, it overlaps data transfer and computation
because threads issuingmemory requestswill be switched off
GPU until the required data are fetched. Therefore, we use
them for host memory access in GAMMA.

There are two implicit memory access modes: unified
memory and zero-copy memory. Unified memory treats host
and device memory as unified memory space, and data are
resident in either side. When a memory access request (even
a single byte) is issued from device to data resident in host, a
page fault occurs, and a data page (typically 4KB) ismigrated
fromhost to device andbuffered. This leads to page-fault han-
dling and long migration latency, but subsequent accesses to
the same page can directly refer to the device buffer for the
required data. D2 in Fig. 1 uses unified memory transfer.

Data access to zero-copy memory will cause data transfer
at units of 128 bytes. Thus, it has almost no extra data migra-
tion cost. It does not have any buffer on the device. As a
result, every time the device issues a memory access request
to zero-copy memory, the required data will be transferred
to the device. D3 in Fig. 1 uses zero-copy memory access.

In summary, unified memory is friendly to data with good
spatial or temporal locality, inwhich casemultiple accesses to
the buffered data make up for the time of page fault and long
migration latency; zero-copy memory is suitable for isolated
and infrequently accessed data because small data migration
size assures low latency. One of our significant contributions
is to design a self-adaptive strategy to determine the proper
host memory access manner for different pages.

3.3 Sharedmemory usage

As noted earlier, shared memory is GPU on-chip memory,
which is a programmable cache to accelerate frequent mem-
ory access. It has a much higher bandwidth than global
memory; therefore, a reasonable strategy of using shared
memory brings about great performance improvement to
some key operations (such as set intersections) in GPM. This
memory is shared by thousands of threads and divided into
equally sized memory modules (called banks) that can be
accessed simultaneously. Figure2 shows the layout of banks
in shared memory. Therefore, memory access to data in dif-
ferent banks can be served simultaneously, leading to high
memory bandwidth. However, if multiple memory addresses
of a memory request map to the same memory bank, the
accesses are serialized, which is referred to as “bank con-
flict” [1]. Bank conflicts cause severe performance decline;
therefore, it is desirable to reduce bank conflicts to maximize
memory bandwidth.

Fig. 2 The memory banks in shared memory

Figure2 demonstrates the banks of shared memory in a
modern GPU architecture. Every 32-bits (4 bytes) belong
to a bank, and there are 32 banks in total. Considering a
consecutive memory space starting from byte 0: {byte 0–
byte 3}, {byte 128–byte 131} belong to bank 0; {byte 4–byte
7}, {byte 132–byte 135} belong to bank 1. Data resident in
different banks can be fetched in parallel, while data in the
same bank can only be accessed serially. For example, byte
0 and byte 127 can be accessed in parallel, but byte 0 and
byte 128 need to be accessed serially. We will discuss how to
optimize shared memory access by reducing bank conflicts
in GAMMA (Sect. 6).

4 GAMMA design overview

GPM involves finding subgraphs of interest in an input data
graphGd . In this paper,we refer to a subgraph to be found as a
pattern, and each specific instance found in the data graph as
an embedding or instance. Although GAMMA applies to all
GPM tasks (e.g., triangle counting, motif counting, kCL, SM
and FPM), in this paper we use subgraph isomorphism (SM)
and frequent pattern mining (FPM) as running examples for
illustration. These tasks are defined as follows:

• Subgraph isomorphism. SM finds in a data graph Gd all
subgraphs (instances) isomorphic to a pattern P that can
be represented as a query graph Gq .

• Frequent pattern mining. FPMfinds all patterns P whose
support (denoted as “sup”) is at least a given threshold.
P’s support is the frequency of the instances of P in Gd .

Figure 3 demonstrates GAMMA’s system overview. We
build a storage layer and an execution engine. The embed-
dings are arranged as an embedding table (Sect. 5.2). We
use both host memory and device memory to store graph
data and the embedding table (Sect. 5.1). In the execution
engine, we provide three primitives to build various algo-
rithms (Sect. 4.2), and adopt three optimizations to improve
their performance (Sect. 6). We also propose optimizations
for set intersection (Sect. 6), which is a key operator in GPM.
The stars in Fig. 3 mark our main contributions. Table 2 lists
all frequently-used notations throughout this paper.
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Fig. 3 GAMMA system overview

Table 2 Frequently used notations

Variable Description

Graph attributes

dmax The maximum degree of vertices

l(v) Adjacency list of vertex v

Nv, Ne Neighbor vertices and neighbor edges

M Embeddings

(u1, u2, u3) A vertex-oriented embedding instance

(e1, e2, e3) A edge-oriented embedding instance

ET , PT Embedding table, pattern table

v-ET Vertex-oriented embedding table

e-ET Edge-oriented embedding table

Gq ,Gd Query graph and data graph

variables in memory access

p Physical memory page

SpatialLoc Spatial locality of a page

temporalLoc Temporal locality of a page

AccHeat Access heat of a page

times(l(v)) The access time of l(v)

A All accessed adjacency lists

4.1 Embedding table

The collection of embeddings for a given pattern is organized
as an embedding table. The embeddings can be organized
in either vertex-oriented or edge-oriented fashion. Conse-
quently, the embedding table can be vertex-oriented (called
v-ET ) or edge-oriented (called e-ET ).

Figure 4 shows examples of SM and FPM. The labels
besides vertices (i.e., vi and u j ) are vertex IDs that we intro-
duce to simplify the description of the graph; similarly for
edge IDs ei and E j . The labels (such as ‘A’) inside vertices
are the actual vertex labels. In a v-ET Tv , each column cor-
responds to one vertex in the pattern. For example, vertex
embedding (u1,u2,u3) in the v-ET of Fig. 4b corresponds to
pattern (v1, v2, v3) in Gq . For e-ET Te, each column corre-
sponds to one edge in the pattern: the first column in e-ET of
Fig. 4b records the matched edges of E1 in Gq .

Fig. 4 An example of edge-extension and vertex-extension in SM and
FPM

4.2 Execution workflow

GAMMA has a three-phase execution process: “extension-
aggregation-filtering” [12, 16, 63].

4.2.1 Extension

The extension step takes an embedding table as input, and
extends the length of each embedding in it by one. Depend-
ing on the type of embedding table that is used, two types of
extensions are possible: vertex-extension and edge-extension.
Each adds one possible vertex (or edge) to the existing
embeddings.

Definition 1 (Extension) Given an embedding M , the vertex
extension (Extv(M)) and edge extension (Exte (M)) of M
are defined as follows:

Extv(M) = {M ⊕ u|u ∈ Nv(M)}
Exte(M) = {M ⊕ e|e ∈ Ne(M)} (1)

where ⊕ denotes adding one vertex or edge into the current
embedding; Nv(M) and Ne(M) denote all neighbor vertices
and adjacent edges to the instance M , defined as

Nv(M) = ⋃
u′∈V (M) Nv(u′) − V (M)

Ne(M) = ⋃
u′∈V (M) Ne(u′) − E(M)

(2)

where Nv(u′) and Ne(u′) denote all neighbor vertices and
adjacent edges to vertex u′, V (M) and E(M) denote all ver-
tices and edges in instance M .

Generally, FPM algorithm uses edge-extension, as shown
in Fig. 4c. SM can use both types of extensions: edge exten-
sion can implement a binary join (query-edge-at-a-time) [30]
andvertex extension can implement aworst-case optimal join
(query-vertex-at-a-time) [38]. Figure 4b includes examples
of vertex-extension and edge-extension in SM. In v-ET Tv ,
initially there are two embeddings (u1, u2) and (u1, u4) that

123



A Graph Pattern Mining... Page 7 of 24     6 

match (v1, v2) in Gq . They can be extended to (u1, u2, u3)
and (u1, u4, u5), respectively. An analogous process exists
for edge extension in e-ET Te. These two different extension
methods make our approach more flexible and effective in
building various GPM algorithms.

4.2.2 Aggregation

This step maps an embedding table ET into a pattern table
PT over which it computes an aggregation function. Each
embedding in ET is mapped to a pattern graph. For exam-
ple, both embeddings (e1, e2) and (e4, e5) are mapped to
the same pattern graph (A-C-B) in FPM of Fig. 4c. This
can be achieved by computing graph canonical label [60].1

Finally, the mapped patterns are aggregated over PT . For
example, only pattern (A-C-B) has support 2, since it has
two instances.

4.2.3 Filtering

GAMMA allows users to specify constraints on the embed-
ding. For example, the extended embeddings should satisfy
the given query graph’s structure in SM; the support of the
mined graph pattern should be no less than a given threshold
in FPM. These conditions can be enforced through filtering
following extension or aggregation.

Some of the pruning can be performed earlier even though
the filtering step follows extension and aggregation. For
example, in SM using vertex extension, extended embed-
dings violating the query graph’s constraint can be pruned
immediately. When extending the embedding (u1, u2) in
Fig. 4b, we only consider the common neighbors of u1 and
u2.

Note that not every primitive is used in every specific algo-
rithm, but the primitives are able to support various GPM
algorithms.

4.3 Implementing GPM tasks—examples

We illustrate the application of the described workflow by
implementing SM and FPM. Figure 5 lists the data structures
and interfaces visible to users in GAMMA.

4.3.1 Subgraph isomorphism

This algorithm can be implemented using either binary join
or worst-case optimal join (WOJ). We illustrate the latter
using primitives in GAMMA.

1 The canonical label of a graph is a code that uniquely identifies the
graph such that two graphs have the same code if and only if they are
isomorphic.

Fig. 5 GAMMA data structures and interfaces

WedemonstrateWOJ implementationusingvertex-centric
extension in Algorithm 1. The initial embeddings inWOJ are
one-columnembedding table,matching the first vertex inGq .
In each iteration, we process one query vertex. For example,
assume that we have all matched vertices corresponding to
v1 in Fig. 4b (line 2), and the next query vertex is v2. For
each embedding in Tv , we consider all possible vertex exten-
sions (e.g., u2 and u4) (line 4). Extended embeddings can be
safely filtered if violating subgraph isomorphism of Gq (line
5). Binary join can be implemented using GAMMA with
a similar process, except that it uses edge extension. Since
GAMMA is a framework, we do not build indexing struc-
tures for a specific algorithm like SM; instead, we perform
pruning and label checking at run-time.

Algorithm 1: WOJ Subgraph Matching
Input: query graph Gq , data graph Gd .
Output: subgraph matching results.

1 Let δv denote the matching order of vertices in Gq ;
2 ET ← all matched vertices to the first vertex in δv ;
3 foreach unmatched vertex v ∈ δv do
4 Ver tex_Extension(ET ,Gd ) ;

5 Fi l ter ing(ET ,Constraint = Gq ) ;

6 end
7 output_result(ET ) ;

4.3.2 Frequent pattern mining

FPM uses edge extension. Initially, all length-1 embeddings
are recorded in ET and the pattern table PT is empty (line
1 in Algorithm 2). In each iteration, we map all extended
embeddings from the last iteration to patterns, append those
patterns to PT , and calculate the support of each pattern (line
3). We filter out patterns in PT that do not satisfy the given
threshold. The instances of invalid patterns are also removed
from ET (line 4). If it is not the last iteration, all embeddings
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in ET are extended by one edge (line 6). Figure 4c illustrates
the above process.

Algorithm 2: Frequent Pattern Mining
Input: data graph Gd , pattern length limit l, minimum support

supmin , map function m f .
Output: all frequent patterns.

1 ET ← all length-1 embeddings, PT ← φ;
2 foreach i ∈ [1,l] do
3 PT = PT ∪ Aggregat ion(ET ,m f ) ;

4 Fi l ter ing(ET , PT ,Constraint = supmin) ;

5 if i<l then

6 Edge_Extension(ET ,Gd ) ;

7 end
8 end
9 output_result(PT ) ;

5 GAMMA: system implementation

In this section, we discuss the implementation details of
GAMMA. Specifically, we first discuss data storage and
access of graph data and embedding tables in Sects. 5.1
and 5.2, respectively. Then, we extend GAMMA to multi-
GPU architecture in Sect. 5.3.

5.1 Data graph data storage and access

We adopt Compressed Sparse Row (CSR) [12, 26, 59] to
represent a data graph Gd , which is made up of adjacency
lists of all vertices. GAMMA is an out-of-core system, since
a large graph cannot be resident in GPU device memory. As
mentioned earlier,GPMtasks alwaysgenerate a largenumber
of intermediate results, thus, a portion of device memory
needs to be reserved for intermediate results to ensure high
write performance. This reduces the space left for graph data
in the device when processing large data graphs. Therefore,
wemaintain the data graphGd in host memory and propose a
self-adaptive host memory access strategy. The maintenance
of intermediate results (embedding tables) are discussed in
Sect. 5.2.

As mentioned in Sect. 3.2, unified memory access [20] is
friendly to data with good spatial or temporal locality, while
zero-copy memory access [39] is suitable for infrequently
accessed and isolated data. We use both access methods to
exploit both of their advantages. Consequently, we duplicate
the CSR of data graph in both unified memory and zero-copy
memory. Graph duplication is not a big issue considering the
hostmemory capacity. GAMMAdoes not build any auxiliary
data structures other than structural information and labels to
represent graphs. Therefore, the storage of a graph with one

Fig. 6 Two different host memory access methods

billion edges takes only 10–15 GB, which is not a significant
concern for host memory.

Adjacency lists are organized in memory pages. The key
issue is to determine the access strategy for each requested
page p. In GAMMA, embeddings are extended in parallel
using the device cores. Before the extension, we can locate
the list of vertices whose adjacency lists will be used. Thus,
for each page p, we can calculate how much data in p will
be accessed in the next extension. If a large portion of p will
be accessed (such as page 2 in Fig. 6), we use the unified
memory access to p (multiple threads access the same page
p); otherwise, p is accessed by the zero-copy memory (such
as page 1 in Fig. 6).

5.1.1 Spatial locality

Existing work [54] shows that serial graph algorithms have
poor spatial locality because of their irregular access patterns,
resulting in low cache hit rate. However, massive parallel
memory accesses enlarge the memory footprint for a period
of time, making some pages have good spatial locality. Usu-
ally, these pages have high-degree vertices or vertices with
some specific labels. If a page p is accessed multiple times
by different GPU threads in the same extension, p has good
spatial locality and is suitable for unified memory access.
The spatial locality due to this parallel access can be used
to improve access performance. Intuitively, spatial locality
defines how much data in p will be accessed, and this can be
formulated as follows.

Definition 2 (Spatial Locality) The spatial locality of a page
p in the i-th extension is defined by the access quantity of p,
i.e.,

SpatialLoci (p) =
∑

l(v)∈p∧l(v)∈Ai

|l(v)| × t imesi (l(v)) (3)

where Ai denotes all accessed adjacency lists in the i-th
extension, l(v) denotes the adjacency list of vertex v, and
|l(v)| is its size. t imesi (l(v)) denotes how many times l(v)

is accessed in the in i-th extension.
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Fig. 7 We take four extensions in SM in different datasets, and show the
ratio of duplication of most frequently accessed pages between current
extension and past extensions

5.1.2 Temporal locality

A page p has good temporal locality implies that when p is
accessed, there is a high probability that it will be accessed
again in the near future. Experiments (in Fig. 7) show that
extensions have good temporal locality. Generally, dupli-
cated hot pages in different extensions take over half of all
hot pages, and even reach 70% when we calculate enough
pages. Thus, we define the temporal locality as follows:

Definition 3 (Temporal Locality) The temporal locality of a
page p in the i-th extension is defined by the access quantity
of p in the first i-1 extensions, i.e.,

T empLoci (p) =
∑

j≤i−1

∑

l(v)∈p∧l(v)∈A j

|l(v)| × times j (l(v))

(4)

where A j , l(v), |l(v)| and times j (l(v)) have been introduced
in defining spatial locality.

T empLoci (p) is similar to SpatialLoci (p), except that
it is a summarized parameter telling the historical access fre-
quency of page p. Some pages have good temporal locality
in the extensions in GAMMA (shown in Fig. 7). Thus, a
page p with large T empLoci (p) will be accessed through
the unified memory, as p can be cached in device for further
extensions.

5.1.3 Access heat

Wedefine theaccess heat for each page p at the i-th extension
that combines spatial locality and temporal locality to model
how likely it is for the page to be accessed.We weigh the two
factors by the ratio between the total accessed data in the i-th
extension and the historical accessed data in the first (i − 1)
extensions as follows.

Definition 4 (Access Heat) The access heat of a page p is
defined as follows:

AccHeati (p) =
Ai∑
j≤i A j

× SpatialLoci (p) +
∑

j≤i−1 A j∑
j≤i A j

× T empLoci (p)

Fig. 8 Data structure and data layout of the embedding table

where A j denotes the total accessed data in the j-th exten-
sion.

5.1.4 Access heat-based adaptive access model

After each extension, AccHeati (p) of each page is updated,
and they are used to determine memory access method in the
following extension: pages accessed through unified mem-
ory have buffers in the device so that the maximum number
Nu of those pages is determined by the available size of
device buffer; Nu hot pages with the largest AccHeat will
be accessed by unified memory, while other data will be
accessed by zero-copy memory. This self-adaptive method
learns hot adjacency lists (or pages) in run-timewithout intro-
ducing too much overhead, and improves overall bandwidth
compared with only using zero-copy memory or unified
memory.

5.2 Embedding table

Data structure. Intermediate results in GPM include many
embeddings. Embeddings extended from the same parent
share a common prefix. Thus, we can use a prefix-tree to
store the embeddings compactly [5, 12]. For example, e-ET
Te in FPM in Fig. 4c is extended to the third edge, as shown in
Fig. 8a, b shows an embedding table after merging common
prefixes.

Some embeddings are invalid after “filtering”, and com-
pressing the embedding table will savemuch space, as shown
in Fig. 8c. The space compression also provides a better
chance for coalescedmemory access. However, the compres-
sion is ignored in existing GPM frameworks [12, 16, 50, 63].
Our compression operation has three stages: firstly, the valid
and invalid embeddings aremarked separately; then, a prefix-
scan, which is an efficient operation on GPU, is performed
on all marks to obtain new positions of valid embeddings
in the compressed embedding table; finally, valid elements
are collected in parallel to form the compressed embedding
table.

Data layout. The embedding table is stored in column-
first fashion: each column of vertex or edge table (e.g., e1, e4
in the first column of Fig. 8c) is stored consecutively for coa-
lesced reading and writing, and each vertex (or edge) has a
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pointer to its predecessor in the same embedding. The size of
the embedding table may grow exponentially in GPM algo-
rithms. Therefore, it should be resident in host memory. The
access to the embedding table is concentrated and contin-
uous, because many embeddings are extended in batches,
which have continuous ancestor units since the embedding
table is stored in columns. Thus, we use the unified memory
for the embedding table. Furthermore, writing results to host
memory directly is much slower than writing to GPU device
memory. Therefore, we keep a buffer on the device to write
extension results, as shown in Fig. 8, and flush them to host
memory after the extension of embeddings.

5.3 Multi-GPU solution

Up to this point, we assume that GAMMA has only a sin-
gle GPU. In order to properly scale, we extend GAMMA
to a multi-GPU solution. Traditional multi-GPU GPM algo-
rithms need to incorporate a specific graph partitioning
strategy to place data across different GPU memories (as
discussed in Sect. 2.4). Obviously, it is difficult to develop a
generic graph partitioning solution for all GPM tasks. There-
fore,we adopt the idea of “disaggregation of computation and
storage” as has been adopted in recent cloud-native database
systems in the multi-GPU version of GAMMA.

The storage layer of the multi-GPU architecture is
the same as that of the single-GPU version. Specifically,
GAMMA maintains the entire graph and the embedding
tables in the host memory. Each GPU is an independent exe-
cution engine and works the same was as in the single-GPU
environment, as illustrated in Fig. 9. Each GPU adopts the
self-adaptive memory access strategy to address graph data
and has its own cache for unified memory. The embedding
table is divided into a number of task blocks, each containing
roughly the same number of embeddings. During execution,
each GPU is assigned an independent task block to process
different embeddings. Although different task blocks may
have different workloads due to different vertex degrees, this
is a dynamic task assignment scheme. Once some GPU has
finished its assigned task, it can fetch new tasks. Thus, the
dynamic work distribution method assures good workload
balance. Furthermore, our solution is agnostic to the spe-
cific graph partitioning strategy and has no communication
among GPUs. Thus, it has a good scalability with respect to
the number of GPUs.

During execution, both “extension” and “filter” primi-
tives are performed on a single embedding; therefore, the
execution of those two primitives is identical to those in
single-GPUmode. The “aggregation” primitive needs to cal-
culate some statistical information of all embeddings in the
host memory. Our proposed optimization 3 in Sect. 6.2 helps
to sort large numbers of embeddings, which is all performed

Fig. 9 Multi-GPU solution of GAMMA

on GPUs. Therefore, all three primitives can be migrated to
multi-GPU architecture.

6 GAMMA: optimization techniques

In this section, we discuss optimizations of GPU execu-
tion engine in GAMMA. As mentioned earlier, there are
three primitives: extension-aggregation-filtering. Filtering is
always done together with extension or aggregation. There-
fore,we focus on optimizing extension andaggregation. Note
that these proposed optimization techniques work for both
single-GPU and multi-GPU architectures, since each GPU
execution engine works independently.

6.1 Optimizing extension

Challenge 1: Parallel Write Conflict. When thousands of
threads on a GPU are performing parallel extensions, each
thread produces an uncertain number of results. As a result,
parallel threads do not know the position they should start
writing. We refer to this as “parallel write conflict”. Most
GPU systems, such as Pangolin [12], solve this by doing
the same process twice: the first round records the number
of results produced by each thread, and the same process is
repeated to collect the results. This method solves the write
conflict with an additional extension, leading to a severe per-
formance decline. GSI [59] estimates the maximum result
set size for each thread and pre-allocates enough space, but
the overestimation often causes significant space waste. In a
word, existing methods are limited with extra time cost or
space cost.

Optimization 1. To solve the write conflict problem, we
design a dynamic memory allocation strategy. The available
memory is divided into many memory blocks that form the
memory pool. Each warp is assigned a memory block into
which it writes the results of embedding extension.When the
allocated memory block is full, the warp requests a new one
from the memory pool and continues with the extension, as
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Fig. 10 Dynamic memory allocation

shown in Fig. 10. A scheduler is responsible for the whole
memory pool and responds to warp requests. Dynamic allo-
cation solves the write conflict problem among warps. Write
conflict among threads within a warp is solved by warp-level
prefix scan. Here we choose a warp as the write unit of a
memory block, because compared with using thread blocks,
the SIMT feature of warp helps solve intra-warp thread con-
flict at minimum cost; compared with using threads, fewer
write units help reduce memory allocation contention and
cut down the waste of memory blocks.

The additional time overhead is due to the memory block
allocation competition between warps. However, the GPU
kernel only has hundreds of active warps, and each warp
only asks for a new memory block after it finishes writing
the current one. This limits the additional time overhead.
The additional space is needed only when the entire process
is finished but a warp has not used up its current memory
block. In the worst case, hundreds of memory blocks might
be wasted. However, in our setting, a memory block is only
8 KB, so this additional storage overhead can be ignored
compared with large-scale intermediate results. Thus, our
method is both time-efficient and space-saving.

Challenge 2: Duplicate Computation. The second chal-
lenge is computational redundancy in the intersection of
multiple lists, a common operation in many GPM algorithms
such as kCL and SM. The state-of-the-art GPM implementa-
tions on GPU, such as Pangolin [12], have large amounts of
computational redundancy. Consider a query graph Gq and
one embedding (u1, u2, u3, u4) that matches the subquery
induced by (v1, v2, v3, v4) (Fig. 11a). The query vertex v5
to be matched is adjacent to u1, u2, u3 and u4. Pangolin
extends the embedding by enumerating each neighbor of
u4, and searches it in the adjacency lists of u1, u2 and u3.
This introduces duplicate computation because those three
adjacency lists are accessed and searched multiple times.
Furthermore, this computational redundancy is even higher
for parallel extension. Consider the multiple embeddings in
Fig. 11b: the first four embeddings are produced by the same
parent embedding, therefore they have the same prefix. The
naive extension leads to more redundant memory accesses
and computation over the adjacency lists of u1, u2 and u3.

Fig. 11 Redundant computation and our solution

To address this problem, we can intersect the adjacency
lists of u1, u2 and u3 to get an intersected list Lm , then inter-
sect Lm with the adjacency list of u4.

Optimization 2. We use shared memory, a fast on-chip
memory to store pre-intersected lists in order to reduce com-
putational redundancy and accelerate memory access.

Embedding extension is done in four steps in GAMMA
(Fig. 11b). First, the embeddings are classified into different
groups according to their prefixes. For example, the first four
embeddings belong to the same group since they share the
same prefix (u1, u2, u3), and the next group contains only
one embedding in Fig. 11b. Then, one warp is responsible
for extending the embeddings in one group. The intersection
of the prefix’s adjacency lists produces the intersection list
Lm . For example, Lm = Nv(u1) ∩ Nv(u2) ∩ Nv(u3), where
Nv(u1) denotes the adjacent neighbors of u1. Finally, in this
example, warp 0 intersects the adjacency lists of u4, u5, u6
and u7 with Lm and writes these results into a warp-level
results buffer (memory block), which was discussed in Chal-
lenge 1. Once an embedding group extension is completed,
warp 0 will move on to the next assigned task, and the results
are collected in the same memory block.

This optimization is suitable for BFS-based extension
method, where embeddings with the same parent are pro-
cessed concurrently. The BFS-based method is widely used
on GPU, because memory access of neighbor threads is con-
centrated and coalesced in this manner.

Challenge 3: Set Intersection.More than half the running
time is spent on set intersection in many GPM algorithms
[23], e.g., k-clique, subgraph matching. Therefore, accel-
erating set intersection is vital to GAMMA. A number of
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Fig. 12 Using bloom filter for list intersection

alternative methods have been proposed for set intersec-
tions on GPU, including hash-based [40], bitmap-based [7]
and liner algebra [56] methods. Most of these aim at GPU
implementation of general set intersections, and they ignore
specific features of intersections in GPM, resulting in unsat-
isfactory performance.

InGPM, one set often needs to be intersectedwithmultiple
sets. For example, in the subgraph match example in Fig. 11,
the task assigned to the first warp (in Fig. 11b) requires list
Lm to be intersected with the adjacency lists of u4, u5, u6
and u7 to obtain different extended embeddings. In the tri-
angle counting task, given a vertex src with n neighbors
dst1, . . . , dstn , the adjacency list of src needs to be inter-
sected with n different adjacency lists to count all triangles
including src. For this computation, an index can be built
on the set that needs to be intersected multiple times. That
is different from pairwise set intersection problem in GPU
studied previously [7, 40, 56].

Furthermore, GPU architecture is different than CPU,
which requires algorithmic adaptation with new challenges
and opportunities.

Optimization 3.Wepropose two optimization techniques
for set intersection.

Three-Stage Set Intersection. Assume one set (Lm)
needs to be intersected with multiple sets Listi , i = 1, . . . n.
For example, in the example given in Fig. 11b, there would
be List4, List5, List6, abd List7 corresponding to u4, u5,
u6 and u7, respectively. In this case, building an auxiliary
data structure on Lm is worthwhile: the performance gains
ofmultiple intersectionsmake up for the overhead of building
auxiliary data structures and bring extra benefits.

Bloom filter is a widely used method to accelerate check-
ing existence of an element in a given list. In the case outlined
above, building abloomfilter on Lm would facilitate the inter-
section: each thread is responsible for searching an element
e in Listi over the the bloom filter of Lm .

Obviously, bloom filter may lead to false positives, thus
requiring a further check for each identified element e. There-
fore, the naive implementation may lead to severe thread
divergence. Since warps do SIMT execution, even if only a
single thread needs to search over the list, all other threads
in the same warp are idle until the search is completed. As
shown in Fig. 12, only four blue elements pass the bloom

Fig. 13 Three-stage process to avoid thread divergence in set intersec-
tion

filter, but all three warps are busy during the search process,
which is a great waste of computation, especially when the
size of intersection is far smaller than either of the original
lists [23, 61].

To address the above problem, we propose a three-stage
process, i.e., filter-collect-search, as shown in Fig. 13. In the
filter stage, each thread checks the existence of an element
of Listi in the bloom filter of Lm , and marks if it passes the
bloom filter check. All passed elements are collected into a
continuous space in the collect stage. Finally, these collected
elements are re-distributed to threads and each thread checks
the existence of one element using binary search. Obviously,
this avoids the thread divergence issue. Furthermore, the col-
lected elements are much fewer than the original list; thus,
the search needs much fewer threads than the filter stage.

Among existing systems that build auxiliary structures to
accelerate list intersections, using hash tables is another pop-
ular choice [40, 41, 53]. However, bloom filters have two
advantages in boosting intersection on GPUs. First, a bloom
filter requires much less memory than a hash table built from
the same list. For instance, for a set with 375 32-bit dis-
tinct integers, A bloom filter of an expected false positive
probability of 0.05 takes up 292 Bytes. However, a hash
table with a load factor of 0.9 requires 1667 Bytes, which
is six times larger. In this case, a bloom filter can fit into
shared memory but a hash table can not. Second, although
we still need to access Lm(usually stored in shared mem-
ory) for final verification due to false positive queries, our
proposed three-stage intersection design effectively triggers
coalesced memory access. By contrast, searching in a hash
table features randommemory access because hash functions
map different search targets to random positions.

Memory-Friendly Data Layout. The last step of the
three-stage algorithm performs a binary search to check the
existence of an element in the underlying list (e.g., Lm).
Since it has higher bandwidth than global memory, shared
memory is often used to speed up binary search as long
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Fig. 14 A memory-friendly data layout

as the shared memory can accommodate the list Lm . The
degree distribution of real-world graphs usually follow the
power-law; therefore, even in large graphs, most adjacency
lists are sufficiently short to be resident in shared memory,
although the space of sharedmemory for eachwarp is limited
(in our setting, the shared memory space for each warp can
accommodate about 375 32-bit integers, i.e, 375 neighbors).
However, binary search has an unpredictable access pattern,
which may cause bank conflicts (discussed in Sect. 3.3). To
avoid this, we propose a new data layout in shared memory
to boost the search performance over lists under the length
of 375.

Suppose there are four threads in a warp and four banks in
the shared memory; there is a non-descending list Lm con-
taining 16 elements in Fig. 14, where each element is a 32-bit
integer. The default approach is to put all elements (in Lm) in
row-first fashion (e.g., Fig. 14a), then each thread performs
binary search to checkone element. For example, four threads
search four elements 15, 18, 50, and 69 in Fig. 14b, respec-
tively. In the first round, all memory accesses coalesce, since
all threads need to check the same middle value (25) due
to binary search. In the second round, thread 0 and thread
1 need to access the first half. Thus, they access the same
middle value (8) in the same transaction. The same holds for
threads 2 and 3 for accessing the middle value (50) of the
second half in another transaction. Although shared memory
has enough bandwidth to parallelizemultiple memory access
transactions simultaneously, the visited values 8 and 50 are
in the same bank. Due to bank conflict, the two transactions

are executed sequentially. Generally, there are seven mem-
ory transactions and one conflict in the traditional row-first
layout.

In the proposed column-first layout, searching for the same
four elements requires only four memory transactions and
incurs no bank conflict (Fig. 14d). We use a row-traversal
method instead of binary search for searching elements. In
the first round, all elements in the first row (1, 10, 30, 56)
are accessed in a single transaction. Each thread can check
to which column its target element belongs by conducting a
binary search in the first row. For example, 10 ≤ 15 < 30,
thus thread 0 only needs to check the second column(bank
1) in the subsequent rounds. Then the warp of four threads
fetches thematrix row-by-row, duringwhich each thread only
needs to compare the target with one element in the specific
column. In this way, we can guarantee that no bank conflict
will happen because all threads access elements in differ-
ent banks or the same element in one bank at each iteration.
After processing all rows, each thread can tell whether its
target element has a match in the list Lm . The process can be
terminated early once all threads find their target elements.
A warp is searched by accessing the list only once, and each
memory access fetches a row in the matrix in Fig. 14c. In
this way, we achieve a complexity of searching for a tar-
get of O(log(B) + 	 N

B 
), where N represents the size of
the list being searched and B denotes the number of banks
(or columns). Though this complexity is slightly higher than
that of a binary search, avoiding bank conflicts can compen-
sate for this gap and improve our performance, according to
experimental results in Section 7.8.

6.2 Optimizing aggregation

Challenge 4: GPU-based External Sort. Aggregation over
the pattern table PT needs to sort the canonical labels of
all pattern graphs in PT . However, the size of PT may be
beyond the capacity of device memory. Thus, optimizing
out-of-core GPU sorting is a challenge. To the best of our
knowledge, most GPU-based sorting algorithms, except for
two works [21, 46], assume that inputs fit in GPU memory.
However, those two methods do not fully utilize GPU par-
allelism. Thus, we propose an optimized out-of-core GPU
sorting algorithm.

Optimization 4. We first partition PT into segments Si
(i = 1, . . . , n) such that each segment Si can be sorted by in-
core GPU sorting algorithms [48]. These n sorted segments
Si are written back to the host memory, and merged using
the multi-merge algorithm (Algorithm 3).

For each segment Si , its checkpoints are defined as the
points that divide Si into partitions of even size, denoted
as psize. In the example given in Fig. 15a, each segment
is partitioned into two parts. The set of checkpoints of Si
is denoted as Ci . Algorithm 3 starts by collecting all the
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checkpoints of Si (i = 1, . . . , n) to get a set Ω (line 2). For
each checkpoint x ∈ Ω , the algorithm finds the matched
index §i in each Si . Intuitively, the matched index of x over a
non-descending sorted segment Si denotes the largest index
§i in Si , where x is no larger than Si [§i ]. Formally, we have
the following definition.

Definition 5 (matched index) Given a value x and a sorted
segment Si , the matched index of x in Si , denoted as §i , is
defined as: (1) 0 < §i < |Si | if Si [§i − 1] < x ≤ Si [§i ]; or
(2) §i = 0 if x ≤ Si [0]; or (3) §i = |Si | if x > Si [|Si | − 1].

Finding the matched indices of different checkpoints on
different segments can be easily parallelized on GPU.

In this way, each segment Si is partitioned into |Ω| + 1
lists Soi , o = 0, . . . , |Ω| (see Fig. 15a). So we divide the
task of merging n segments Si (i = 1, . . . , n) into many
subtasks of merging short segments (line 4). Our partition
method with “checkpoints” and “matched index” assures
that each partition size is no larger than psize, otherwise
severe workload imbalance may occur. These subtasks can
be conducted independently, achieving high parallelism on
GPU. Figure 15a gives an example. The first subtask merges
all S0i (i = 1, . . . , n) (marked in blue), which are smaller
than the first checkpoint c2. Thus, the merged list of all
S0i (i = 1, . . . , n) should precede the list merging all S1i
(i = 1, . . . , n).

For explanation, we only discuss how to merge each 0-th
list in all Si (i = 1, . . . , n) (lines 7–23). Figure 15a highlights
these on the three sorted lists, denoted as S01 , S

0
2 , and S03 ,

which are merged into a sorted list S0m . A naive solution
works as follows. Consider each element x in S02 (assume
that S02 [i]=x): we search the matched index of x in all other
lists (i.e., S01 and S03 in Fig. 15b), denoted as I x1 and I x3 ,
respectively. We can infer that the final index of x in S0m
is i + I x1 + I x3 , as illustrated in Fig. 15b. We perform the
same process for each element in all sorted lists S0i (i =
1, . . . , n) to locate elements in the merged list S0m , which can
be parallelized.

Some redundant search, e.g., searching elements of S02
over S03 , can be avoided. We can define an order of these
short segments (i.e., S01 , S

0
2 and S03 in Fig. 15c) and only

search elements of S0j over S
0
k , where j > k (lines 14–18).

Assume that all elements in S03 find their matched indices in
S02 , we count all matched indices at each position of S02 to
obtain the vector [0,0,0,2,0,1,0,1]. The prefix-sum over this
vector generates the vector [0,0,0,2,2,3,3,4] (lines 20–21),
which denotes the matched indices of elements in S02 over
S03 . For the i

th element x in S02 , the i
th element in the prefix-

sum vector denotes the matched index I x3 over S03 . Thus,
we avoid searching x over S03 . Figure 15c demonstrates how
to compute writing positions of all elements in S02 , where
the 4-th element x is highlighted in red. Prefix-sum is an

Algorithm 3: Multi-merge Kernel
Input: sorted list set S (|S| = n).
Output: One Merged List.

1 /* block-wise spliting lists*/;
2 check_points ← get_check_points(S);
3 /* block-wise dividing tasks*/;
4 subtask_set ← divide(S, check_points);
5 /* warp-wise merging short lists*/;
6 foreach i th subtask ∈ subtask_sets do
7 Si1,..., S

i
n , global_of f ← get_subtask(subtask_set , i);

8 wri ting_pos[][] ← initial_n_writing_pos();
9 /* handling each (Sij ,S

i
k ) pair*/;

10 foreach j ∈ [1,n] do
11 foreach k ∈ [1,j) do
12 matched_idx[], matched_cnt[] ← zeros();
13 /* thread-wise searching for matches*/;
14 foreach p ∈ [0,|Sij |) do
15 pos ← search_for_match(Sij [p], Sik );
16 matched_idx[p] ← pos;
17 matched_cnt[pos] += 1;
18 end
19 wri ting_pos[ j].vector_add(matched_idx);
20 prefix_sum(matched_cnt);
21 wri ting_pos[k].vector_add(matched_cnt);
22 end
23 end
24 /* thread-wise writing merged results Sim*/;
25 foreach Sij ∈ Si1,...,S

i
n do

26 parallel_writing(Sij , wri ting_pos[ j], global_of f );
27 end
28 end

efficient operation on GPU, thus we can save about half of
the workloads.

This process of sorting embeddings beyond the size of
device memory is easy to extend to multi-GPU solutions.
Firstly, all embeddings can be partitioned and sorted into
multiple sorted segments, just as the input of Stage 1 in
Fig. 15a. Then we perform the multi-merge process as dis-
cussed above. The processing of each (Sij , S

i
k) pair (lines

10–23 in Algorithm 3) can be dispatched to multiple GPUs,
since they are independent tasks.

Sorting large numbers of embeddings is necessary for the
“aggregation” primitive, and our proposed methods improve
its performance for both single-GPU and multi-GPU solu-
tions.

6.3 Complexity analysis

The complexity of GPM tasks is primarily due to combi-
natorial enumeration and isomorphism check, and the most
time-consuming stage is the final extension because of its
exponentially increased intermediate results size [12]. Here
we give the worst-case complexity analysis.
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Fig. 15 Two stages of multi-merge

Considering SMalgorithmon an input graphG with n ver-
tices and the maximum embedding size of k, the maximum
degree in G is denoted as dmax . There are up to O(nk−1)

size-(k − 1) embeddings (partial matches) in the embedding
table before the final extension. For each size-(k − 1) partial
match p, assume thatwe extend the embedding fromone data
vertex in p. Obviously, there are up to O(nk−1dmax ) possible
new candidate embeddings. For each new candidate match
p′, we need to check adjacency of the new extended vertex
v (v = p′ − p) with the other k − 2 vertices in size-(k − 1)
partial match p. The adjacency check is done using binary
search over the adjacency lists. Thus, the overall complex-
ity is O(nk−1dmax (k−2)log(dmax )). That is the complexity
of naive combinatorial enumeration as implemented in Pan-
golin [12].

Our Optimization 2 groups embeddings to avoid redun-
dancy. In the last extension, all size-(k − 1) embeddings can
be grouped by sharing size-(k − 2) embeddings as parents.
Generally, there are up to O(nk−2) embedding groups. In
processing each group, we first intersect the adjacency lists
of k−2 prefix vertices, whose complexity is O((k−2)dmax )

for each group. As analyzed in the last paragraph, there are
O(nk−1dmax ) new size-k candidate embeddings p′. For each
candidate embedding, we only need to check the adjacency
of the new extended vertex with regard to the pre-intersected
list, whose time complexity is O(log(dmax )), since the pre-
intersected list length is O(dmax ). Therefore, the complexity
of combinatorial enumeration in GAMMA is O(nk−2(k −
2)dmax + nk−1dmaxlog(dmax )), which is less than that of
Pangolin because of the grouping operation.

The complexity of the isomorphism test for each new
embedding is O(e

√
klogk) [6]. Considering combinatorial

enumeration and isomorphism check, the complexity is
O(nk−2(k−2)dmax+nk−1dmax (log(dmax )+e

√
klogk)) in the

worst case. Other GPMalgorithms can be analyzed similarly.
Assuming there arew warps in the device, the complexity

is O(
nk−2(k−2)dmax+nk−1dmax (log(dmax )+e

√
klogk )

w
), in which the

Table 3 Datasets Infos

Dataset Nodes Edges Types

cit-Patent(CP) 6M 17M Citation

com-lj(CL) 4M 34M Social

com-orkut(CO) 3M 117M Social

email-Euall(EA) 265K 729K Email

email-Enron(ER) 37K 368K Email

gowalla(GW) 197K 2M 2,273,138

com-lj×8(CL×8) 32M 467M Synthetic

soc-Live×5(SL×5) 24M 481M Synthetic

uk2005(UK5) 39M 1.6B Web

it2004(IT) 41M 2.1B Web

twitter_rv(TW) 62M 2.4B Social

uk2014(UK14) 196M 14.8B Web

tasks of eachwarp are independent. Thread parallelism inside
warps is affected by memory access and thread divergence,
which can further reduce the parallel complexity.

7 Experiments

7.1 Experimental setting

Infrastructure. We use the CUDA−9.0 toolkit and GCC
5.3.0 to compile all codes with -O3 option. All experiments
on a single GPU are carried out on a Linux server with a 32-
core Intel Xeon E5-2640 CPU and 380 GB of host memory.
It also has an NVIDIA Tesla V100 with 16 GB of global
memory. For multi-GPU solutions, we test them on a cloud
server with 8 V100 GPUs.

Datasets. We use several real graphs with varying sizes
from different domains. To test the scalability of GAMMA
to large graphs, we scale up soc-Live and com-l j by 5×
and 8× using graph upscaling technique [42]; we also use
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Fig. 16 Peak memory usage

billion-scale real-world graphs. Table 3 lists all datasets. We
also include uk2014 data set with more than ten billion edges
for the scalability test. Datasets of such scale are never tested
in previous work. For the evaluation convenience, we sam-
pled 30% of its edges because existing systems cannot run
SM, kCL, and FPM on the entire uk2014 graph and end in a
reasonable time.

Comparative evaluation. We use subgraph matching
(SM), frequent pattern mining (FPM), and k-clique (kCL)
workloads to compare GAMMA2 with baselines (Pangoline
[12], Peregrine [27], GSI [59], and GraphMiner [9]) and the
state-of-the-art GPU-based solutions (PBE [22], G2Miner
[10], and GraphSet [47]).

Wealsouse some task-specific implementations to demon-
strate that GAMMA makes it easier to implement graph
mining algorithmswithout sacrificing performance.We com-
pare with GSI [59], a state-of-the-art subgraph matching
algorithm on GPU, for subgraph matching. It uses “prealloc-
combine” method to avoid joining-twice. It also introduces a
GPU-friendly data structure to improve the joining phase in
SM. Since existingGPUalgorithms do not have good support
for FPM on large graphs, we use the FPM implementation in
GraphMiner [9], which is a parallel graph algorithm library
that combines several state-of-the-art GPM designs [11–13].

7.2 Memory usage

The peak memory usage of GAMMA and other GPU-
based GPM implementations, including the host memory
and device memory, is shown in Fig. 16. GAMMA uses less
memory than other GPM implementations for a given input
graph, thanks to our compression of the embedding table.
There are many cases in GAMMA where memory usage
exceeds available device memory. The maximum memory
consumption reaches 310 GB in some large graphs. In-core
GPM algorithms only use device memory and cannot run on
large graphs, while GAMMA is the first to support out-of-

2 Our codes are released on github: https://github.com/pkumod/
GAMMA.

core GPM on GPU by adaptively storing the data graph in
the host memory.

Figure16 also indicates that in general, SM consumes less
memory than FPM, and FPM requires less memory than kCL
when the edge number goes beyond 107. In other words, the
maximum graph size in SM is the largest among the three
algorithms in our experiments, and that of kCL is the smallest.
This is because SM has the most pruning conditions, while
kCL has the fewest. We can also notice that the gap between
these three algorithms is unstable. For example, when the
edge size is around 107, the memory usage of SM and kCL
are close.When the edge size exceeds 108, the gap increases,
since kCL’s intermediate result size increases rapidly, and
therefore it is more likely to run out of GPU memory.

7.3 Comparative evaluation

GAMMA’s comparative evaluation with the baselines on dif-
ferent workloads is discussed below.

K-clique. The experimental results of GAMMA com-
pared with state-of-the-art works for kCL are shown in
Fig. 19. “Pangolin-ST” denotes the single-thread version
of Pangolin, and “Pangolin-GPU” denotes the GPU ver-
sion. Some baselines crash on large graphs, so we omit
those cases in the figure, but GAMMA shows good scalabil-
ity on all datasets. Furthermore, GAMMA performs better
than “Pangolin-GPU” and Peregrine, achieving an average
speedup of 2.39× and 3.17×, respectively. Comparison with
SOTA solutions indicates GAMMA’s capability of settling
the out-of-core problem and maintaining competitive perfor-
mance. PBE is even slower than baseline systems in k-clique
tests because many cross-partition queries are introduced
by clique-like patterns. GAMMA beats PBE by 8.91× on
average. G2Miner also partitions large data graphs, so cross-
partition edges can harm its performance. As a result, we
can see that GAMMA is 13% faster than G2Miner on large
graphs like UK5.

SM. Fig. 17 reports the running time of GAMMA, GSI,
and Peregrine for three SMqueries in Fig. 21 on each dataset.
Pangolin andGraphMiner are not included in the comparison
since they do not implement subgraph-matching algorithm.

GAMMA performs much better than GSI and Peregrine
on all large graph datasets except for two small datasets (E A
and ER), achieving 90.1% speedup over GSI and 173.9%
speedup over Peregrine on all datasets. Preparing host mem-
ory storage in GAMMA accounts for much of the total
running time for small datasets. Thus, it is slower than GSI
with an in-core GPU implementation and the CPU-based
Peregrine. GSI and Peregrine crash on some datasets in our
experiments, which we omit in Fig. 17. The reason for these
crashes is the enormous size of the intermediate results. As
shown in Fig. 17, GAMMA manages to finish all queries
with the proposed compressed storage for the intermediate
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Fig. 17 Performance of SM against baselines

Fig. 18 Performance of SM against SOTA solutions

Fig. 19 Performance of kCL against baselines

results. Although PBE narrows its performance gap with
other systems, GAMMA still has an advantage of 4.51×.
The comparison with G2Miner has similar results with k-
clique evaluation, where GAMMA and G2Miner is equally
matched on smaller graphs but GAMMA slightly prevails on
larger graphs, thanks to GAMMA’s uniquememorymanage-
ment strategy.

FPM. We compare GAMMA with GraphMiner, Pere-
grine, and Pangolin in FPM. As shown in Fig. 22, GAMMA
exhibits significant scalability advantages over other works.
Specifically, GAMMA can process billion-scale graphs
(UK14), while other methods meet crashes in these datasets.
GAMMA has 86.1% and 73.8% performance improvement
compared with “Pangolin-ST” and “Pangolin-GPU”, respec-
tively. Also,GAMMAachieves an average of 50.6% speedup
comparedwithPeregrine.AlthoughGraphMiner implements
a specific FPM algorithm, GAMMA still prevails, achieving

Fig. 20 Performance of kCL against SOTA solutions

Fig. 21 Query graphs in SM

Fig. 22 Performance of FPM compared with baselines
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Fig. 23 Performance of FPM compared with SOTA solutions

Fig. 24 Different graph
densities

Fig. 25 Different number of warps

24.7% performance improvements. GAMMA shows perfor-
mance superiority due to the optimization of the aggregation
primitive (Optimization 3 in Sect. 6). This alleviates the
device memory limit and allows the aggregation of huge
embedding tables. Compared with baselines, GAMMA’s
optimized three-phase processing framework guarantees per-
formance superiority in FPM. It is worth mentioning that
GraphSet is the fastest system in our evaluation, but it cannot
deal with graphs larger than GPU memory. Therefore, it fail
to process large graphswithmore than 1B edges. Besides, the
performance advantage of GraphSet becomes much smaller
in the evaluation of frequent pattern matching, since Graph-
Set expects algorithms to contain perfect loops (i.e., nested
loops with all computation only in the innermost loop) as
much as possible, which is not the case for algorithms requir-
ing aggregations like frequent pattern mining.

7.4 Scalability

Wehave evaluatedGAMMA’s scalability ranging from small
to billion-scale graphs in Sect. 7.3. As shown in Figs. 17

Fig. 26 The effect of our optimizations on kCL

and 22, GAMMA can process much larger graphs than other
works and scales well with graph size.

Next, we focus on the scalability of graph density and
warp number. We generate Kronecker graphs [31] with dif-
ferent numbers of vertices and graph densities. As shown
in Fig. 24, GAMMA has good scalability for graph density,
and its running times increase approximately linearly as the
graph density increases.

Warp is the basic unit for memory access and thread col-
laboration onGPU.We present the performance of GAMMA
under different numbers of warps in Fig. 25, where we use
the performance of “Pangolin-ST” as a baseline and plot
GAMMA’s normalized speedup. It outperforms “Pangolin-
ST”with onewarp or twowarps and has approximately linear
performance improvements as the warp number increases.

7.5 Evaluation of primitive optimizations

In this subsection, we evaluate the effectiveness of the three
optimizations discussed in Sect. 6. The first two optimiza-
tions are related to the “extension” primitive. We design a
dynamic memory allocation strategy, denoted as “dynamic-
alloc” in the following figures. We also avoid duplicate
computation by grouping embeddings with the same prefix.
This optimization is marked as “pre-merge” in the figures.
As a baseline, the “naive” method does not have either opti-
mization. Note that the third optimization for out-of-core
multiple lists intersection (denoted as “multimerge-opt”) is
only involved in FPM to compute the support of patterns.
Therefore, we evaluate the first two optimizations in SM and
kCL in Figs. 27 and 26, respectively.

Figures 27 and 26 show that both “dynamic-alloc” and
“pre-merge” significantly improve performance, especially
in some large graphs. “dynamic-alloc” helps speed up the
naive approach by 21.7% on average, and “pre-merge” fur-
ther achieves 25.4% performance improvements.

Sorting a list that exceeds the device memory is an essen-
tial operation for our aggregation primitive, andOptimization
3 reduces the computation time of this operation (called
“multimerge+opt”). Existing works of out-of-core GPU sort
usually involve considerable CPU processing [21, 46]. Thus,

123



A Graph Pattern Mining... Page 19 of 24     6 

Fig. 27 The effect of optimizations on SM

Fig. 28 The effect of our memory access mode

Table 4 FPM performance of different sorting methods.(sec)

Dataset cpusort xrt2sort Multimerge Multimerge+opt

CL×8 42.37 33.12 35.87 31.14

SL×5 40.05 32.23 33.8 30.85

Fig. 29 Effect of Optimization 3 on multi-merge

they cannot achieve maximum parallelism. We compare
“multimerge+opt” with “cpusort”, a popular sorting method
implemented by Thrust [2] on CPU, and “xtr2sort” [46], a
state-of-the-art out-of-core sort implementation on GPU that
replaces merging by data rearrangement and sorting twice.
We also include “multimerge” that searches each item of seg-
ments over other segments (see Fig. 15b). Not all datasets
need the external sort of the pattern table PT, and we show
the performance of two datasets as examples in Table 4, in
which our approach runs the fastest compared with different
baselines.

To further analyze the effectiveness of Optimization 3 on
the sorting process alone, we generate 64-bit value sets of
different sizes and performmulti-merge with different meth-
ods. CPU-based sorting ismuchworse than otherGPU-based
methods, as shown in Table 4, and we do not plot its results.
In Fig. 29, horizontal axis labels denote tasks. For example,
“4.3B8W” indicates that 8-way multi-merge is performed on
4.3 billion 64-bit values. From Fig. 29, we conclude that this
optimization achieves 34.2% speedup over the naive imple-
mentation and 20.9% speedup over xtr2sort.

7.6 Evaluation of hybrid memory access

We evaluate GAMMA’s memory access determination strat-
egy over all three GPM workloads. The results are shown in
Fig. 28. We use unified memory alone and zero-copy mem-
ory alone as baselines. As discussed earlier, host memory
accesses vary a lot, so neither single access method works
well. GAMMA’s combined memory access method achieves
47.4% speedup over only using unified memory and 51.0%
speedup over only using zero-copy memory.Note that the
performance gains brought about by primitive optimizations
and the hybrid access strategy are orthogonal because the
former are algorithmic-level designs while the latter is an
optimization on the underlying memory access.

Figure 30 demonstrates time breakdown on computation,
on-device memory access, and cross-device data commu-
nication to investigate our system bottleneck. We use a
representative data graph, orkut, and report time breakdown
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Fig. 30 Running time breakdown of computation and communication
on Orkut

Fig. 31 The necessity of compression of embedding tables

when running kCL, SM, and FPM with single-GPU and
multi-GPU settings. Cross-device data communication takes
up the lowest percentage (27.1% on average) thanks to our
self-adaptive memory access strategy, which consider both
spatial and temporal locality and dynamically adjusts mem-
ory access mode. Apart from verifying the impact of our
hybrid memory access in reducing cross-device communi-
cation, we have two observations by analyzing this time
breakdown. First, on-device memory access (i.e., access-
ing GPU memory) consumes the largest portion of running
time. This is because graph patternmining algorithms require
reading neighbor lists repeatedly and writing back interme-
diate results to GPU memory. Second, we also notice that
cross-device transfer is more time-consuming at the first few
iterations and in thefirst run3 because cross-device data trans-
fer is inevitable when you request data for the first time.

These observations inspire us to possible future optimiza-
tion. Although the size of intermediate results has been
reduced, it still causes a large burden compared to com-
putational costs, which is a disadvantage of the BFS-based
computation manner. Therefore, DFS-based computation
logic that produces much less intermediate results should
be combined with our current system. Besides, since cold-
start is a problem for implicit cross-device communication, a
warm-up process or pre-load techniques may be worth con-
sidering.

3 We report average performance of five runs.

Fig. 32 The performance of different intersection methods in k-clique

7.7 Compression of embedding table

In Sect. 5.2, we propose compressing the embedding table,
which is not used in other GPM frameworks. In this set of
experiments, we show the necessity of compression. Fig-
ure 31 shows the variation of the embedding table size for
four datasets in FPM, which benefits most from embed-
ding table compression. After each extension, the embedding
table is compressed for the following three points: reduc-
ing memory usage and unnecessary enumerations of invalid
embeddings in later extensions and achievingmore coalesced
memory access. As shown in Fig. 31, embedding table size
shrinks sharply after compression in each iteration for all
datasets. This demonstrates the necessity of the compres-
sion of embedding tables. Compression reduces excessive
and unnecessary memory usage of the embedding table and
plays a key role in GAMMA’s ability to process large graphs.

7.8 Evaluation of set intersectionmethods and
optimization

There aremany general methods in the literature for set inter-
section on GPU based on hash method [40], binary search
[26], bitmap [7] and static index [43]. However, GPM algo-
rithmsneed a large number of parallel set intersections,which
makes some methods unsuitable. For example, set intersec-
tion based on bitmap [7] and static index [43] need extra
space, which causes much more space usage in GPM. Thus,
these two methods are not suitable. In our experiments, we
use set intersection implementation based on hash method
[41] and optimized binary search (OBS) [26] as baselines to
evaluate the effect of our proposed set intersection method.

Hash-based method builds a hash table on the short list of
the two intersected lists, then each element in the long list
searches in the hash table. TheOBS-basedmethod caches the
search tree’s top levels in sharedmemory to improvememory
access performance. These two methods achieve good per-
formance improvements on set intersections; however, they
are general-purpose solutions, and our proposed set intersec-
tion method achieves better performance in GPM because of
more algorithm-concerned optimizations.

Frequent pattern mining algorithms do not need set
intersections. Thus, we evaluate the effect of different set
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Fig. 33 The performance of different intersection methods in subgraph
matching

Fig. 34 The effect of avoiding bank conflicts in k-clique counting

intersection methods in kCL and SM. We record all the
required intersections throughout the execution and compare
the running time of conducting these intersections with vari-
ousmethods instead of showing the running time of the entire
algorithm. In this way, we can omit the influence of the other
procedures in kCL and SM.

In Figs. 32 and 33, the “naive” method indicates the
original method used in [25] without extra set intersection
optimizations; “our method” denotes our intersection strat-
egy with optimizations 2 and 3 proposed in Sect. 6. As shown
in the figures, our method has better performance than the
hash-basedmethod andOBS-basedmethod; it achieves 1.2×
∼ 2.65× performance improvement over the naivemethod in
k-clique counting problem and achieves 1.04× ∼ 3.4× per-
formance improvement in subgraph matching. What’s worth
mentioning is that the speedup is higher for kCL than SM
because kCL requires intersections involving more neighbor
lists, and the 3-stage intersection method achieves higher
improvement when more sets are to be intersected.

We also evaluate the effect of our optimized memory lay-
out in Sect. 6.1 in Fig. 34 to figure out their contribution to the
overall performance. In the kCL algorithm, our method has
an average of 1.19× speed up over the naive implementation.
The performance gain is more obvious on larger datasets. In
conclusion, our proposed optimizations for set intersections
work well and improve performance compared to existing
solutions.

7.9 Evaluation of multi-GPU performance

In this subsection, we conduct two experiments to evalu-
ate the effect of our proposed multi-GPU implementation of
GAMMA. We use kCL and FPM as examples for the con-

Fig. 35 The scalability of multi-GPU implementation in kCL

venience of presentation because the operations of kCL and
SM are similar. First, we test the scalability of our multi-
GPU implementation with an 8-GPU cloud server and report
the running time using 1, 2, 4, and 8 GPUs. On the cloud
server, the single-GPU implementation used as the baseline is
slightly slower, but it’s acceptable because we only examine
the performance gain when the number of GPUs increases.
Second, we compare GAMMA’s multi-GPU implementa-
tion with existing systems: PBE [22], G2Miner [10], and
GraphSet [47]. We omit the smaller datasets, ER, CP, and
EA because these datasets are too small for multi-GPU solu-
tions to showperformance gains. Their running time of actual
computation is very short in a single GPU, so the overhead
of setting up the environment takes up too much time in the
multi-GPU version. There is no necessity to use multi-GPU
implementation for small datasets.

Figure 35 shows the running time of kCL on different
datasets with different numbers of GPUs. We set k = 4 by
default. Our implementation achieves a 1.61× speedup with
2 GPUs, a 2.62× speedup with 4 GPUs, and 3.27× with 8
GPUs. When we use 8 GPUs, the speedup averaged by the
GPU number is only 0.4, which is lower than our 2-GPU
(0.8) and 4-GPU (0.65) solutions. However, if we compare
the speedup for different datasets, we can see that our 8-GPU
implementation achieves higher speedup on larger datasets
(e.g., 4.15× onUKversus 2.36× onCL).When the dataset is
relatively small and only a small workload is assigned to each
GPU, the overhead from setup and scheduling dominates the
performance. Our multi-GPU solution can scale to and suit
billion-scale datasets better because we use a flexible strat-
egy for data storage and a dynamic task assignment scheme,
which reduces cross-device communication and workload
imbalance.

FPMismore challengingwhen running in parallel because
aggregation operation is required to gather the results from
different GPUs to calculate the global pattern counts. How-
ever, as shown inFig. 36,GAMMAstill achieves a speedupof
1.44×, 2.34×, and 3.09× using 2,4 and 8GPUs, respectively.
The performance improvement is attributed to extending the
sorting optimization to the multi-GPU (presented in Sect. 6).
This optimization facilitates GAMMA to organize results
from multiple GPUs efficiently.
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Fig. 36 The scalability of multi-GPU implementation in FPM

Fig. 37 k-clique performance of multi-GPU GAMMA against SOTA
solutions

Fig. 38 Frequent pattern mining performance of multi-GPU GAMMA
against SOTA solutions

Compared to recent multi-GPU solutions, GAMMA
maintains its advantage in terms of performance and scalabil-
ity, according to Figs. 37 and 38. As mentioned in Sect. 7.3,
although GraphSet achieves high efficiency on data graphs
that can fit into GPU memory, it cannot handle the out-of-
core problem in its multi-GPU implementation. Strategies to
partition data graphs larger than GPU memory capacity are
not the focus of GraphSet design. In this case, increasing the
number of GPUs cannot enable GraphSet to support larger
graphs effectively.

8 Conclusions

In this paper, we design GAMMA, an out-of-core GPM
(graph pattern mining) framework on GPU, which hides
implementation details from users and provides flexible and
effective primitives. To the best of our knowledge, it is the
first framework to support GPM on large graphs on GPU.
We design data structures resident in both host and device
memory and provide self-adaptive hostmemory accessmeth-
ods. Therefore, GAMMA can cope with a large number of

intermediate results. Processing large graphs on GPU brings
challenges, and we give three optimizations to improve
performance. Based on the design for single-GPU imple-
mentation, we scale GAMMA to a multi-GPU environment.
Extensive experiments show that GAMMA outperforms
state-of-the-art GPM frameworks and some dedicated graph
algorithms on GPU.
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