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Abstract—As a powerful expression of human knowledge in a structural form, knowledge graph (KG) has drawn great attention from

both the academia and the industry and a large number of construction and application technologies have been proposed. Large-scale

knowledge graphs such as DBpedia, YAGO and Wikidata are published and widely used in various tasks. However, most of them are

far from perfect and have many quality issues. For example, they may contain inaccurate or outdated entries and do not cover enough

facts, which limits their credibility and further utility. Data quality has a long research history in the field of traditional relational data and

recently attracts more knowledge graph experts. In this paper, we provide a systematic and comprehensive review of the quality

management on knowledge graphs, covering overall research topics about not only quality issues, dimentions and metrics, but also

quality management processes from quality assessment and error detection, to error correction and KG completion. We categorize

existing works in terms of target goals and used methods for better understanding. In the end, we discuss some key issues and

possible directions on knowledge graph quality management for further research.

Index Terms—Knowledge graph, quality management, evaluation, error detection, error correction, completion

Ç

1 INTRODUCTION

RECENT years have witnessed vigorous development of
knowledge graph (KG) construction and application.

KG expresses real-world entities and relationships in a
structural way and has great potential to carry human
knowledge and promote the development of artificial
intelligence. Many large-scale knowledge graphs, such as
DBpeida [1], YAGO [2], Wikidata [3], NELL [4] and
KnowledgeVault [5], are constructed from various struc-
tured, semi-structured or unstructured data sources. They
have been widely used in several real-world applications,
from information retrieval [6], question answering [7], [8],
to recommender systems [9], [10] and domain-specific
tasks [11], [12].

However, as these graphs are often extracted and fused
from different sources automatically or semi-automatically,
they are far from perfect and have a large variation in data
quality [13]. For example, errors and conflicts may come
from the data sources or the extraction and fusion stages,
and the KGs can hardly cover all the facts we need so that
incomplete problem exists. Quality issues have big impact
on the credibility and usability of the knowledge graphs. In
order to further increase the utility of such knowledge

graphs in downstream tasks, quality management processes
need to be taken into consideration carefully, from quality
assessment, problem discovery (e.g., error and inconsis-
tency detection) to quality improvement (e.g., error correc-
tion and graph completion).

Research on data quality has a long history and it can be
traced back to 1990s, when the MIT Total Data Quality Man-
agement (TDQM) program was formally established to treat
data quality as a specialized research field [14]. Since then, a
considerable amount of literature has been published on
data quality dimensions and metrics [15], [16], [17]. And a
large number of methods and tools are developed for
assessment, detection, and repair of data quality problems
[18], [19], [20]. With the advent of the Big Data Era, the char-
acteristics of the 4 V’s (Volume, Velocity, Variety, Value)
bring new challenges to quality management [21], [22], [23].
More and more researchers turn eyes to newly emerging
data structures, such as the widely-used knowledge graphs,
and many graph-specific quality management methods are
proposed.

Quality management methods on traditional relational
data are difficult to be applied to KGs directly for at least
four reasons. First, unlike relational data, graphs are semi-
structured and often do not come with a schema to specify
the integrity and semantics of the data. Heterogeneity and
flexibility make the structures more complex. Second, the
Semantic Web and knowledge graphs typically follow the
Open World Assumption (OWA) [24], where a statement
not included in the KG can be wrong or just absent. So it’s
difficult to distinguish wrong tuples from missing ones.
What’s more, real-world KGs often contain massive noise,
and the assumption widely adopted in traditional technolo-
gies that the data is basically correct may not hold. Last but
not least, due to the scale of the real-life graphs which is typ-
ically beyond the capacity of existing methods, a direct
application of such techniques often suffers an unbearable
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time and complexity. Therefore, new solutions for knowl-
edge graphs are in urgent need and gradually developed.

In this paper, we aim to review recent researches on the
knowledge graph quality management, from theory to prac-
tice, and provide a systematic and comprehensive survey
on related works, hoping to give an intuitive and clear over-
view and inspire new opinions and methods to readers. We
notice that many related but not identical surveys on knowl-
edge graphs and data quality have been published in recent
years. Some focus on features and construction technologies
of existing knowledge graphs [25], [26], [27], some explore
reasoning technologies on knowledge graphs as well as
their applications [28], [29], while others focus on statistical
relation learning and embedding learning methods [30],
[31], [32]. On the other hand, traditional data quality
research is still advancing, with surveys about data quality
metrics and assesment [20], [33], data quality theory [34],
[35] and tools [18], [19], and challenges in Big Data Era [22],
[36]. There are also some works studying knowledge graph
quality by combining these two research fields together. For
example, [16] reviews approaches for assessing the quality
of Linking Open Data (LOD) and provides a comprehensive
list of quality dimensions and metrics. [13], [37] and [38]
experimentally evaluate the quality of existing knowledge
graphs by some proposed metrics. And methodological
researches for specific quality issues such as completeness
[39] and duplication [40] are published. However, these
studies remain narrow in focus dealing only with part of
the quality issues and to date there are few studies that try
to give a panoramic overview of knowledge graph quality
management technologies, which covers not only definition
of quality dimensions and metrics, but also the whole pro-
cess from assessment, detection to improvement of knowl-
edge graph quality problems.

The most related work to our focus is [41], written by
Heiko Paulheim and published in 2017. In this paper, Paul-
heim surveys knowledge graph refinement technologies in
terms of approaches and evaluation methods. He distin-
guishes KG completion from error detection, and internal
from external methods, and further categorizes the methods
by the refinement target such as entity types, relations and
literal values. This is a good survey for knowledge graph
quality management and has inspired a number of subse-
quent researches. At the same time, however, its taxonomy
is mainly based on shallow features like internal or external
resources and target type, failing to look deep into the meth-
ods used by different works. It focuses only on tasks of com-
pletion and error detection, and does not take into account
other quality management aspects like quality assessment
and error correction. Besides, various quality dimensions
and metrics are not included in, leading to the fact that it
pays too much attention to correctness and completeness
and overlooks other issues such as timeliness and redun-
dancy. And it doesn’t contain latest methods published in
recent years.

Out of the above reasons, we carrry out a deep and
careful review of works on knowledge graph quality
management, expecially those published in recent six
years, and provide a comprehensive overview with in-
depth analysis. Our main contributions are summarized
as follows:

1) Comprehensive and Newest Review. We present a sys-
tematic and comprehensive review on all aspects of
knowledge graph quality management, from theory
to practice, including not only quality issues, dimen-
sions and metrics, but also the whole quality man-
agement process from quality assessment and error
detection, to error correction and KG completion.

2) In-depth Taxonomies. We categorize existing works on
three orthogonal dimensions. For methods used,
they are generally categorised into human-based,
statistics/learning-based, rule-based, and hybrid
approaches; for processing goals, they fall under
three headings: (1) quality assessment, (2) problem
discovery, and (3) quality improvement; for target
dimensions, accuracy, consistency, completeness,
timeliness and redundancy are adopted for classfica-
tion. This multi-dimensional taxonomy helps to bet-
ter understand and analyse existing methods, which
we believe will inspire more fancy ideas and
technologies.

3) Discussions and Outlook on Future Directions. In the
end of the article, we take a closer reflection and
summary of the proposed methods, showing some
interesting findings as well as providing several
potential research directions.

The rest of the paper is organized in the following way.
Section 2 gives a brief introduction on knowledge graph
and data quality foundations, as well as our research objects
and categorization. In Sections 3, 4, and 5, we present
knowledge graph quality management technologies on
human-based, statistics-based, and rule-based methods
respectively. Then we introduce some hybrid approaches
with more than one measure of human, rule and statistics in
Section 6. Section 7 gives an in-depth discussion on the
listed methods and presents some interesting findings and
further directions. And in Section 8 we conclude the paper.

2 PRELIMINARIES

2.1 Knowledge Graph and RDF Model

Knowledge base (KB) is a set of rules, facts and assumptions
that stores knowledge in a machine understandable format
[27]. The term knowledge graph, is first proposed by Google
in 20121, which can be seen as a specification of KB that
stores knowledge in the from of graphs. Following the defi-
nition of Ji et al. in [42], a knowledge graph is a multi-rela-
tional graph composed of entities and relations which are
regarded as nodes and different types of edges respectively.

The W3C’s Resource Description Framework (RDF)2 is a
general data model for knowledge representation. In RDF
standard, each fact is represented in the form of (subject,
predicate, object) (SPO) triples, where subject and object are
entities and predicate reflects the relation between them.
There are also predicates whose objects are literal values
instead of entities, which are used to describe different
attributes of the entities. For example, the statement ”the
Capital of China is Beijing” can be represented as (sub:China,

1. https://blog.google/products/search/introducing-knowledge-
graph-things-not/

2. https://www.w3.org/RDF/
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pred:capital, obj:Beijing) in RDF. Each triple is an atomic ele-
ment and can be changed into nodes and edges to form into
a graph in their visual presentation, called RDF graph.

Fig. 1 shows an example of a knowledge graph with its
corresponding RDF triples. In this article, we will follow the
RDF standard to represent knowledge graphs.

2.2 Data Quality Foundations

Data quality (DQ) has been studied for a long time and
many definitions and assessment measures are proposed.
However, there is still no uniform standard accepted by
both academia and industry. One thing for sure is that data
quality depends not only on its own characteristics, but also
on the business environment being used, including business
processes and business users [22].

2.2.1 Data Quality Definition

One generally accepted definition for data quality is ”fit for
use” [43], [44], which means that the assessment of data
quality is highly subject and context-dependent. It is not an
absolute measure, only used to understand the suitability
with specific applications, but is not sufficient to develop
evaluation and improvement algorithms. In terms of
machine implementation, a more technical explanation is
”free of defects” [45], by which algorithms can detect viola-
tion and errors based on a given criteria, in the form of logic
rules or statistical thresholds, etc.

2.2.2 Data Quality Dimensions

Data quality dimensions give a way to assess data quality
from different aspects, each of which is associated with vari-
ous metrics and indicators to be calculated. What dimen-
sions to choose depends on the data comsumer and
downstream task. Generally, it can be divided into four cat-
egories: intrinsic, contextual, accessibility and representa-
tion [23], [46], as illustrated in Fig. 2. More essentially, these
dimensions fall into two classes of intrinsic and extrinsic
[47], where the former rely on the data itself and the latter
are application-dependent. Intristic dimensions mainly
include:

� Accuracy: It measures whether the data reflects the
facts correctly, i.e., it is the degree to which the data
is close to the realistic value.

� Consistency: It means that the data agrees with each
other and is free of conflicts with respect to particu-
lar integrity constraints.

� Completeness: It describes whether the dataset con-
tains all relevant data of interest, including levels of
schema, property, types, etc. About completeness,

there are Closed World Assumption (CWA), Open
World Assumption (OWA) and Partial-Complete-
ness Assumption (PCA) [48] to interpret the non-
existent triples.

� Timeliness: It reflects the degree to which the data is
up-to-date [49], and is useful in datasets that often
change dynamically.

� Redundancy: It means that the dataset does not con-
tain two identical objects (like entities or attributes)
with different names.

It is important to keep in mind that these dimensions are
not independent of each other and have complex inter-rela-
tionships. For example, a knowledge graph committed to
covering more triples is quite likely to have a lower accu-
racy. Thus there is a trade-off among different quality issues
for dataset constructors and they vary in different fields and
application tasks. For data quality practitioners, selecting
quality dimensions also depends on their specific needs.

2.2.3 Data Quality Metrics

As data quality dimensions are just abstract concepts, it is
required to define specific metrics to apply and measure
these dimensions in practice. These metrics need to build a
connection with the underlying data in spite of intrinsic or
extrinsic aspects. For example, accuracy can be defined as
the percentage of the correct facts. Though the intrinsic met-
rics generally can be implemented without relying on exter-
nal environment, this is not always the case. An instance is
that the measure of completeness largely depends on its
context.

Intrinsic and extrinsic metrics have interactions. As Sadiq
et al. conclude in [50], the aim of intrinsic metrics is eventu-
ally contribute to an extrinsic metric, and the extrinsic met-
rics have to be tied to underlying intrinsic metrics. They
have an overlapping relationship and both rely on down-
stream applications.

2.2.4 Data Lifecycle

There are a lifecycle and several processing transformations
for data from its generation to actural applications, and
quality issues can occur at any stage. This means that data
quality consideration should be rooted along the whole
pipeline. Fig. 3 shows a data lifecycle pipeline [23], [51]

Fig. 1. An example of a knowledge graph and its corresponding RDF
triples.

Fig. 2. Data quality dimensions and main characteristics.
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containing five steps, namely, data generation, information
extraction, data integration, analysis and application.

2.2.5 Data Quality Management

In a previous survey on data quality measurement and
monitoring tools [18], the authors divide data quality meth-
odologies into four activities: data profiling, data quality
measurement, data cleansing and continuous quality moni-
toring. We reconsider this question and classify data quality
management into the following three processes:

1) Quality Assessment. This is the process of quality
measurement and evaluation using pre-defined
dimensions and metrics to check whether the data
quality can meet the requirement of the application.

2) Problem Discovery. Different from assessment that
only aiming at an overall perception of specific qual-
ity issues, problem discovery devotes to finding out
the inherent wrong assertions, and further, to deriv-
ing higher level patterns to explain why these errors
occur. The identified error assertions can be removed
or modified, and the error patterns help to reveal the
underlying causes, both of which contribute to the
further quality improvement.

3) Quality Improvement. This is to improve the overall
quality of the dataset. Considering the various qual-
ity dimensions, it can be calssified into two types:
error correction, which involves various issues like
inaccuracy, inconsistency and outdated, and comple-
tion, which improves the coverage of the dataset.

These three processes have a progressive relation and
can be implemented at all stages of the data lifecycle.

2.3 Knowledge Graph Quality

As a specfic data type, researches on knowledge graph are
in the same line with general data type. The definition,
dimensions and metrics on data quality can be transferred
to knowledge graphs, as those did in [16], [46]. Due to the
particularity of the knowledge graph structure, there are
also possibilities to develop new dedicated dimensions and
metrics. In this paper, we focus on the intrisic features and
choose five widely used indicators: accuracy, consistency,
completeness, timeliness and redundancy, which are
explained in Section 2.2.2.

Like the data lifecycle depicted in Fig. 3, knowledge
graph also has a construction and application pipeline. That
is, data sources’ acquisition and evaluation before construc-
tion, knowledge extraction and fusion under construction,
and interesting applications after construction [52]. Simi-
larly, quality issues can happen and be processed at all of
the stages.

Owing to the schemalessness, heterogeneity, Open
World Assumpion, massive noise and scalability issues,
directly applying traditional quality management methods
on knowledge graphs faces some challenges and problems,
which calls for new and dedicated solutions. At the same

time, however, the structure and path characteristics of
graphs bring extra opportunities and possibilities for the
problem. Data quality and knowledge graph quality are by
no means isolated and they can promote each other. Generic
methods can be modified to fit for graphs and the develop-
ment of tailored methods will promote data quality
researches as well.

2.4 Coverage of This Article

Due to the wide range of the concepts, it is necessary to
explain the focus and coverage of the article here. In this
paper, we seek to review researches on knowledge graph
quality management. That is to say, for target objects, we
focus on knowledge graphs rather than generic data types.
We pay attention to the whole process of quality manage-
ment, from assessment, problem discovery, to quality
improvement. In terms of the lifecycle of knowledge graphs,
our focus is on the assessment and refinement of the con-
structed graphs, which omits the source evaluation before
construction and is distinguished from the technologies of
knowledge graph construction like extraction and fusion.
For quality dimensions, we focus on the five intrisic features
and bypass those application-dependent extrinsic ones.

Positioning at the given knowledge graphs and the intri-
sic dimensions contributes to focus on generic methods and
technologies. It separates quality issues from different
downstream tasks and is independent of different construc-
tion methods, which helps to better understand the essential
thoughts of various quality management measures. Besides,
since a large amount of knowledge graphs have been con-
structed and released, focusing on the after-construction
technologies has more space for implement and evaluation,
and frees the quality practitioners from the tedious con-
struction processes.

Based on these ideas, we conduct a systematic review
procedure by using inclusion and exclusion criteria to
search and restrict related publications as [28] and [39] do.
The search strategy is divided into three steps:

� Search on Google Scholar and get the first 100 results
with keywords “knowledge graph quality”. Check
the publication lists of major data management and
SemanticWeb conferences including SIGMOD, ICDE,
VLDB, WWW, ISWC and ESWC from 2016 to 2021
(note that the survey of Paulheim’s [41] is up to 2015.),
with at least one of the keywords (“quality”,
“knowledge graph”, “knowledge base”, “linked open
data”, “assessment”, “validation”, “refinement”,
“link prediction”, “completion”, “detect”, “clean”,
“repair”) appearing in the titles.

� Remove those not related to our purpose from the
candidate publications by checking the titles,
abstracts and sometimes the full articles.

� Search more relevant references and citations from
those significant articles iteratively until no more key
articles are found.

This procedure results in more than 1,000 candidate pub-
lications, and by iterative expansion and careful examina-
tion, the core articles are basically included, especially those
published in recent years.

Fig. 3. Data lifecycle from generation to application.
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2.5 Taxonomies of This Article

Related works and methods are organized and categorized
from three orthogonal aspects: technologies used, process-
ing goals and target dimensions, which are explained next.

2.5.1 Technologies Used

Based on the inherent technologies used by different meth-
ods, they are divided into several groups:

(a) Human-based, where manpower plays an important
role, of either experts or crowdsourcing.

(b) Statistics&Learning-based. This branch contains
works of both traditional statistical methods like out-
lier detection and classic machine learning algorithms,
as well as the embedding-based representation learn-
ing and neural networks.

(c) Rule-based, where rules of different forms are
defined, extracted, checked and applied for quality
management.

(d) Hybrid approaches, where techniques of human
intelligence, statistical means and rule reasoning are
combined in some way.

2.5.2 Processing Goals

As the data quality management process introduced in Sec-
tion 2.2.5, methods are classified into three processing goals
of quality assessment, problem discovery and quality
improvement, where problem discovery can be further sub-
divided into false assertion recognition and error pattern
derivation, and quality improvement contains error correc-
tion and graph completion.

2.5.3 Target Dimensions

We focus on intrinsic quality dimensions and articles can be
grouped and classified according to their attention on vari-
ous dimensions, i.e., accuracy, consistency, completeness,
timeliness, and redundancy, as explained in Section 2.2.2.

3 METHODS BASED ON HUMAN

For problems that are diffcult to be solved by machines,
manual methods are generally considered to be intuitive
and credible, though sometimes cost and scalability issues
exist. In this section we talk about methods based mainly on
human intelligence, where the human can be both domain
experts and crowdsourcing workers without specific skills,
and they can participate in all the processes of quality man-
agement. Methods where manpower is introduced as extra
external sources or combined with other technologies are
left in the next sections.

3.1 Methods for Quality Assessment

Quality assessment of knowledge graphs is indispensable
for downstream applications and subsequent improvement.
The overall quality of KGs can quantify the fitness to vari-
ous tasks, and fine-grained quality measurements on single
predicates or classes give a way to feedback to the construc-
tion process and do further correction. But this problem has
long been overlooked by academic research.

Manual evaluation is typically themainmethod to conduct
quality assessment. Due to the scale of real-life KGs, it is not
possible to exhaust all tuples, thus an alternative way is to
evaluate on a sample set and the sample result is used to esti-
mate thewhole. The simplest andmost widely used sampling
technique is simple random sampling [13], but determining
an appropriate number of samples is not easy: small sample
sets prone to deviate from the real value and oversampling
brings more labeling cost. To handle this, Ojha and Talukdar
[53] build a novel crowdsourcing system, KGEval, for knowl-
edge graph accuracy assessment, which models dependen-
cies among triples by horn-clause coupling constraints [54],
[55] and adopts a greedy algorithm with accuracy guarantee
to iteratively choose a small set for human labeling. Later Gao
et al. [56] provide an iterative sampling and evaluation frame-
work for both static and evolving KGs with the thought of
clustering, where various sampling strategies are proposed
and compared, and the whole process is under a statistical
framework with strong quality guarantee and minimal
human efforts. They demonstrate by both theory and practice
that to achieve a certain level of precision, the evaluation cost
is only affected by the underlying KG quality rather than the
size, showing the huge potential of sampling on large-scale
knowledge graph quality assessment.

These works mainly focus on KG accuracy defined by the
percentage of correct triples in the KG, but there are still
large research gaps on other quality dimensions like com-
pleteness and redundancy being effectively evaluated by
humans. And considering that humans make mistakes
sometimes, crowdsouring technologies such as worker
quality estimation and truth inference [57], [58] need to be
taken into account.

3.2 Methods for Problem Discovery

Unlike quality assessment that can be implemented and esti-
mated on a small sample set, the recognition of false asser-
tions and error patterns requires in-depth perception and
analysis on the concrete data. In [59], a generialized method-
ology for linked data quality analysis is proposed, compris-
ing of a manual and a semi-automatic process. They focus on
four quality dimensions and first define a category of 17
kinds of quality problems on DBpedia [1], and then a crowd-
sourcing tool, TripleCheckMate [60], is developed, where
workers are allowed to choose and evaluate on individual
resources, detect errors and link to the predefined error clas-
sification. [61] and [62] look deep into the effectiveness of
crowdsourcing approaches on KG problem discovery. They
combine two kinds of tasks: (1) a contest targeting at experts
to find out and classify erroneous triples, and (2) microtasks
published on the crowdsourcing platformAmazonMechani-
cal Turk3, to be verified by ordinary workers. Their experi-
ments show that these two paradigms of crowdsourcing can
complement each other and crowdsourcing-based methods
are promising to identify and address KG quality problems.

3.3 Methods for Quality Improvement

For those detected erroneous triples, one fixing way is to
directly remove them from the database, which may lead to

3. https://www.mturk.com/
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unnecessary loss of information. And missing facts need to
be added for better completeness. Automated modification
can give rise to new errors and thereby is often avoided in
actual business scenarios [18], but quality improvement by
humans is feasible and often necessary. In [63], Jiang et al.
propose to use database facts and crowdsourcing verifica-
tion for knowledge base enhancement on wrong and miss-
ing relationships between entities. They design a dynamic
algorithm to select candidates within a limited budget and
maximize the benefit, as well as techniques for graph upda-
tion according to the crowdsourcing results, where depen-
dencies among triples are considered.

To conclude this section, quality management based on
human is a natural and common way in industrial scenes
but does not attract enough academic researches. People
can easily participate in all aspects of quality controlment,
but cost and scalability issues are quite severe for large-scale
KGs. Sampling and crowdsourcing are two commonly used
methods. How to guarantee accuracy with minimal budget
and how to design suitable user interactions for different
tasks still demand for more studies.

4 METHODS BASED ON STATISTICS/LEARNING

This section discusses about methods based on statistics,
from traditional statistical means like distribution-based
outlier detection and classic machine learning algorithms,
to the currently prevailing embedding-based representation
learning and neural network methods.

4.1 Traditional Statistical Methods

4.1.1 Methods for Problem Discovery

Outlier means the one that appears to be inconsistent with the
remainder of the dataset and outlier detection techniques
have long been used to detect and remove anomalous data
[64]. In KG quality management, these methods are helpful to
identify errors, especially those numerical literal values,
though sometimes they cannot well distinguish natural out-
liers from actual errors. In [65], Paulheim and Bizer exploit
statistical distributions of properties and types to identify
wrong triples and addmissing type statements. They propose
SDValidate, which assigns a confidence score to each state-
ment and spots outliers by a given threshold. Experiments
show that this method outperforms most previous works
without extra knowledges. [66] uses different outlier detec-
tion methods like interquantile range and kernel density esti-
mation, combining with various preprocessing strategies to
identify numerical errors in DBpedia, reaches 87% precision
and finds out 11 systematic errors to improve the construction
process. [67] further exploits the owl:sameAs links between
resources to alleviate the influence of natural outliers.

Following the outlier detection technologies based on sta-
tistical distribution, the thoughts of feature extraction and
machine learning classfication are introduced to detect errors.
[68] represents each link as a feature vector in a higher dimen-
sional vector space and shows the effectiveness of outlier
detection methods to identify wrong links between datasets.
[69] extracts features by path kernels [70] and trains a binary
classifier such as decision tree to conduct ontology reasoning
and A-box consistency checking, proving the possibility of
machine learning for approximate inconsistency detection. In

[71], the outlier detection problem in numerical data is decom-
posed into a set of supervised learning problems, where a pre-
dictive model for each attribute is learned from other
attributes to identify patterns as well as to derive weights and
outlier scores. It is demonstrated that this method is robust to
irrelevant attributes and is capable of giving concise explana-
tions for outliers with symbolic methods. In [72], local path
and type features are used to train a classifier for every rela-
tion to detect wrong relation assertions, which is further
expanded in [73] to deduce higher level error patterns.

External resources are exploited in some works for fact
validation and error detection. [74], [75], [76] search evi-
dence from the web, text corpus and query logs, which are
then used to judge the correctness of KG triples, and in this
process technologies of knowledge fusion and truth discov-
ery [77], [78] are adopted. Apart from these, [79] proposes
several predicate matching functions to find identical
resources from other knowledge graphs for validating RDF
triples. And in [80], reference sets of similar entities are
compared to identify unexcepted facts about entities.

Some graph exploration techniques are also proposed to
discover errors in KGs. [81] devotes to detect wrong IsA
relation in large-scale lexical taxonomies, which is modeled
as the detection and elimination of cycles. They use two
models based on DAG (directed acyclic graph) decomposi-
tion and level assignment respectively and give efficient
algorithms. Another work is [82], aiming at discovering
exceptional facts about entities in knowledge graphs. It
models an exceptional fact as a context-subspace pair, and
applies beam search as well as two heuristic algorithms to
cope with the exponential search space, where the detected
exceptional facts can be candidates of wrong and inconsis-
tent triples. Both of these two works pay main attention on
the scalability to handle very large graphs.

Besides, a knowledge graph triple trustworthiness mea-
surement model is proposed in [83], which fuses character-
istics of three levels from entity, relationship to KG global.
For entity level, they propose an algorithm called Resour-
ceRank to determine whether there is a possible relationship
between entity pairs; for relation level, a translation-based
energy function is used; and for KG level, a reachable paths
inference algorithm is designed to measure the trustworthy
of a given triple. These three features are combined together
into a multi-layer perceptron to output the final triple val-
ues, which can detect incorrect triples in the graph.

Different from the above methods focusing on false
assertions, [84] devotes to reveal common properties of the
errors to explain where and how these errors happen in
data generative process. They propose an error diagnosis
framework, Data X-Ray, using feature hierarchies and
Bayesian analysis to derive the most likely causes associated
with the errors, and a top-down iterative algorithm as well
as a parallel MapReduce version are implemented to scale
to large datasets. Similarly, [73] derives higher level pat-
terns from the errors by translating the classifiers of decision
trees into SHACL-SPARQL relation constraints.

4.1.2 Methods for Quality Improvement

Similar to the methods for problem discovery, statistical dis-
tributions and external resources are used for knowledge
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graph quality improvement, expecially for completing miss-
ing information. In [85], a web-search-based question-
answering technology is used to find missing objects for a
given subject-relation pair on demand. They train the sys-
tem by query logs and existing KB facts to learn what ques-
tions to ask in the web for different subject-relation pairs.
[86] proposes SDType, using the statistical distribution of
types in the subject and object of the property to predict the
instance’s missing type, which they believe has better toler-
ance with respect to noise in the data. [87] pays attention to
errors derived from instance confusion (wrong links to enti-
ties with similar names) and attempts to correct them. They
first perform error detection algorithms to find out potential
false assertions, and retrieve candidate entities to do the
replacement. The low accuracy is not satisfactory enough
for practical correction on real-life KGs that the authors rec-
ommend to work as suggestions for users, which at the
same time demonstrates the intractability of automatic error
correction tasks.

In general, the trend of traditional statistics-based meth-
ods is moving from pure statistical distribution to explicit
feature extraction and supervised machine learning, and
more and more works try to absorb external resources and
propose methods specific to graphs for KG problem discov-
ery and quality improvement. The next direction is to sub-
stitute manual feature engineering with embedding
techniques, which are discussed below.

4.2 Embedding-Based Methods

Motivated by the booming development of deep learning,
the paradigm of graph mining and graph analysis is chang-
ing from traditional feature engineering to graph represen-
tation learning, by which the vertices, edges and subgraphs
of a graph are converted into low-dimensional dense
embeddings to be fed into various machine learning models
for downstream applications. This is such a hot research
direction with a large number of publications and surveys
[31], [32], [88], [89] that we don’t seek to cover all related
works on graph embedding, but give an overview of how
these methods can be used for knowledge graph quality
management, with some classic embedding technologies
presented and state the pros and cons of such embedding-
based methods. To get a more comprehensive and in-depth
understanding of embedding techniques, we recommend
readers to read the surveys listed above.

4.2.1 Overview of Embedding-Based Methods

The key idea behind KG embedding is to learn the represen-
tation of graph components like nodes and edges into con-
tinuous vector spaces, with the structure and attribute
characteristics being reserved. Early methods solely make
use of the observed triples in knowledge graphs with vari-
ous embedding spaces and learning models, and more and
more works commit to introducing additional resources,
such as entity types [90], textual descriptions [91] and logi-
cal rules [92], for better embeddings. And the learning
model is getting more complex, from shallow distributed
representation, to multilayer neural networks.

Typically, a KG embedding method can be decomposed
into three steps [32]: (1) determining the representation

space of entities and relations, where entities are usually
represented as vectors, and relations are generally regarded
as the operation between entities, represented as vectors,
matrices, tensors, and so on; (2) defining a score function to
capture features from the graph; and (3) designing a suit-
able model and corresponding algorithms to solve the opti-
mization problem.

The output of the representation learning methods is a
set of low-dimensional embeddings for different entities
and relations, and one can access the accuracy of triples as
well as inferring new facts by calculating on the learned
embeddings. Typical evaluation and application tasks
include link prediction [93], triple classification [91], entity
classification [94] and open information extraction [95], all
of which handle quality issues about completeness from dif-
ferent perspectives.

4.2.2 Graph Embedding Techniques: A Taxonomy

Here we talk about the main methods of knowledge graph
embedding, which generally fall under four headings:
translational distance models, tensor decomposition mod-
els, deep learning models, and models with additional
information.

Translational Distance Models. This kind of models regard
relations as geometric transformations in the vector space
and measure the score of a fact by calculating the distance
between the resulting vector after transformation and the
tail entity. The most representative one of this kind is
TransE [96], which is inspired by Word2Vec [120] and
enforces that the embedding of the tail entity should be
close to the sum of the head and relation embeddings for
the right triples. It is simple enough to be trained on very
large graphs and has been shown to be of effectiveness in
many scenes, but cannot perform well on 1-to-N, N-to-1
and N-to-N relations. In order to overcome this disadvan-
tage, many variants of TransE are proposed. For example,
TransH [97] models a relation as a hyperplane together with
a translation operation, thus enables an entity to have differ-
ent roles in different relations. TransR [98] represents each
relation as a dynamic mapping matrix, which is further sim-
plified in TransD [99] and TranSparse [100]. Other works
include TransM [101], CrossE [102], RotatE [103], and etc.

Tensor Decomposition Models. Models based on tensor
decomposition represent the connections between nodes in
the form of matrices or higher-order tensors, and obtain the
node embedding by factorizing these tensors [88]. They
vary in the representation space and the decomposition
algorithm. RESCAL [104] represents each entity as a vector
and each relation as a matrix, and the scoring function is
computed as a bilinear product. It is simplified in DistMult
[105], where all relation embeddings are restricted to be
diagonal matrices and therefore the space of parameters is
reduced. SimplE [106] learns two vectors for each entity and
each relation like Canonical Polyadix (CP) decomposition
[107], and enhances CP by capturing the dependency of the
two vectors, which is fully expressive and is able to model
asymmetric relations. HolE [108] employs circular correla-
tion to create compositional representations, which can be
seen as a compression of the tensor product and reduce the
time and space complexity.
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Deep Learning Models. Deep learning-based models adopt
neural networks to capture the non-linearity in graphs,
where parameters are organized into separate layers with
different non-linear activation functions. Modern graph
neural networks (GNNs) can address the embedding prob-
lem through a graph autoencoder framework [121], which
typically use the connectivity and features of the graph and
iteratively aggregate the node embeddings of local
neighborhood.

There are many different kinds of GNNs depending on
the various extraction and aggregation functions, including
graph convolutional networks like GCN [109] and GraphS-
AGE [110], graph attention networks like GAT [111] and
HGT [112], graph autoencoders [113], [114] and graph spa-
tial-temporal networks [115], [116]. And inspired by the
development of pre-trained models in natural language
processing (NLP) and computer vision (CV), many self-
supervised learning methods and pre-trained GNNs are
proposed for better transferring among datasets and tasks
[117], [118].

Models With Additional Information. In addition to the evo-
lution of models and algorithms, many researches attempt
to integrate more external resources, from textual informa-
tion to logical rules. [119] presents a comprehensive survey
about KG embedding techniques with additional literals
such as text and numerical values. DKRL [94] learns the
semantics of entity descriptions by two encoders, continu-
ous bag-of-words and deep concolutional neural models,
which are associated with the TransE [96] embedding for
each entity to handle the zero-shot scenarios. [92] proposes
a general framework to jointly model triples and rules,
where rules help to get better entity and relation embed-
dings for tasks like link prediction, showing the effective-
ness of joint learning.

Though embedding-based methods have shown great
potential in efficiently mining and analysing on large-scale
graphs and have many successful applications even beyond
in-KG quality management, however, they still face many
deficiencies. In terms of knowledge graph quality manage-
ment, the problems can be solved by embedding are lim-
ited. Embedding-based methods can predict and complete
missing information, such as entity types and relations, and
sometimes help to identify redundant entities with other
resources [122], but they cannot assess the overall KG qual-
ity. They learn from data and make predictions accordingly,
assuming most (or all) of the input data is correct, which
departs from our setting where the input KB has many qual-
ity issues, leading to the fact that they don’t have good abili-
ties to find and correct wrong triples. Experiments have
shown that KG embeddings are quite sensitive to sparse
and unreliable data [123]. And [124] finds that reverse tri-
ples and other redundancy in existing benchmarks lead to a
substantial over-estimation of the embedding models’ accu-
racy, and argues that link prediction doesn’t have truly
effective automated solution. These works remind us to re-
consider the effectiveness of embedding methods on real-
life KGs. Besides, embedding-based methods typically
encode entities and relations into vectors, but overlook the
semantics and dependencies of literal values. Apart from
these, the poor interpretability and complex parameter
selection of these methods are always mentioned. And the

problem of transferring across different datasets and tasks
has not been fully resolved yet. In summary, embedding-
based methods are potential solutions for knowledge graph
quality management, but they are far from enough and still
have a long way to go.

5 METHODS BASED ON RULES

Unlike the above two categories of methods that need dif-
ferent designs for different tasks, rules can put all quality
management processes into a unify framework, which typi-
cally contains four steps: the definition of rules, rule extrac-
tion, rule assessment and evaluation, rule application to
conduct problem discovery and quality improvement. Vari-
ous forms of rules have been proposed together with min-
ing and application algorithms, all of which have to make a
balance between expressivity and computational complex-
ity. Next we first present an overview of rule-based meth-
ods and move on to several types of rules for KG quality
management.

5.1 Overview of Rule-Based Methods

As a classic symbolic reasoning technique, rule and rule
learning have a long research history, from early inductive
logic programming [167], to those studied in relational data
mining in databases [168], and rules in KGs [29]. Rules rep-
resent knowledge in an explicit way and can be enhanced
with human intelligence easily, which makes it keep an
important position even in the era of deep learning and neu-
ral networks. Manual writing is the most direct way to gen-
erate rules, but it is diffcult for humans to exhaust all. Rule
learning makes it possible to automatically discover rules
and has become an important subfield of machine learning.

Rule learning algorithms can be roughly divided into
two groups, those frequent pattern mining methods that
aim to discover typical patterns from the dataset to be trans-
formed into corrseponding rules, e.g., [126], [127], and those
enhanced by embedding techniques for efficiency and accu-
racy [133], [134]. It often comes with a rule assessment stage
with some statistical metrics like support and confidence in
an automatic rule mining process (see [169] for more met-
rics). And in case of KGs where issues like inaccuracy and
incompleteness widely exist, new evaluation metrics are
being proposed, such as those in [170], [171]. Many works
suggest to check the extracted rules by domain experts
before applying, and a latest work [172] introduces the
thought of human-in-the-loop and designs a few-shot
knowledge validation framework for interactive quality
assessment of rules, which takes the rule validation forward
one step.

Rules can be directly used to discover and correct quality
issues like errors and incompleteness in KGs, but often face
the problem of efficiency and scalability, which is explored
in different researches.

5.2 Predicate Logic Rules

First-order predicate logic rules are main reasoning meth-
ods in early statistical relational learning field [28] and have
been widely studied in inductive logic programming (ILP),
e.g., [173], [174]. Classical ILP systems usually cannot be
applied to KGs due to the open world assumption and the
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scalability problem. And more and more successful meth-
ods have been proposed in KGs. Horn rule, a proper subset
of First-order predicate logic, is the most commonly
adopted rule form. It is a formula of the form
B1 ^ ::: ^Bn ) H, where B1 ^ ::: ^Bn is a set of body atoms
showing conditions and H is the head atom. Here each
atom is a relation pair r(X,Y), meaning that there is a rela-
tion r between entities X and Y. For example, bellow is a
horn rule, which means that if Y is the daughter of X and Z
is the wife of X, then Y is also the daughter of Z.

daughterðX;Y Þ ^ wifeðX;ZÞ ) daughterðZ; Y Þ

AMIE [48] is a classic rule mining system for horn rules
on large RDF knowledge bases based on the partial complete-
ness assumption (PCA). It defines a set of mining operators
and explores the search space by iteratively extending rules.
And a suite of optimization strategies are proposed in
AMIE+ [125] and AMIE 3 [126] to further speed up the rule
mining process. The mined rules are used to predict missing
relations in KGs, i.e., for completeness improvement, with
satisfactory accuracy. But they remove all facts with literals
(such as attribute and type information) and thus the
expressivity and applicability of the rules are limited.

RDF2Rules [127] is another rule learning method, which
generates rules by searching for frequent predicate cycles
evaluated with a confidence score. Compared to AMIE+, it
takes additional advantage of entity type information for
accuracy and runs faster. But it still faces the problem of
expressivity and applicability as AMIE does. [128] devotes
to revise the given horn rules by adding negated atoms into
the bodies, which enhances the ability to catch possible
exceptions to some extent.

RuDiK [129], [130] models the rule mining process as an
incremental graph exploration problem and adopts the A�

graph traversal algorithm [175] to get the most promising
path at each iteration. It reconsiders the open world
assumption and presents a generation algorithm of negative
examples to mine rules over erroneous and incomplete KBs.
Both positive and negative rules are mined from RuDiK,
where the former can identify missing relationships
between entities, and the later helps to detect errors and
contradictions. Besides, it allows literal comparisons and
constant selections in the rules, which enables much more
patterns to be expressed.

[131] is a pioneering work to learn completeness asser-
tions for relations in KGs, which can be used to measure the
fine-grained completeness for single predicates, as well as
to identify missing relations and improve the precision of
fact prediction. They propose a set of signals indicating
completeness of properties and by combining and injecting
these signals into AMIE, they obtain high-quality complete-
ness rules which can achieve a up to 100% precision for
some relations on real KBs.

Meilicke et al. strongly emphasize the advantages of rule
methods in KG completion tasks and propose AnyBURL
[132], an efficient bottom-up rule learning system for uncer-
tain horn rules by exploring KG paths. The rules are used to
predicate missing objects with reusability and interpretabil-
ity, and the algorithm is proved to be faster than previous
systems.

Apart from these, more and more works try to learn logic
rules with the help of embedding techniques. RLvLR [133]
reduces the task of rule learning into that of searching for
plausible paths of predicates. It proposes a new sampling
method to start from the target predicates and path rules
are extended iteratively by using the embeddings of the
sample graph, which are then evaluated and pruned
according to some novel scoring functions. It is demon-
strated that RLvLR is faster and is able to mine more quality
rules than AIME+, and outperforms Neural LP [176] in
terms of efficiency and accuracy in link prediction tasks. In
[134], rule learning is guided by a precomputed embedding
model and external information sources like text corpora,
where the efficiency and link prediction precision are
improved. DRUM [135], an end-to-end differentiable rule
mining system, adopts bidirectional RNNs to learn rule
structures and scores simultaneously, where the learned
rules are used for knowledge graph completion.

Although embedding techniques have shown potential
to assist logic rule learning for efficiency and accuracy, most
of these works are limited to predicate paths, where the
rules are able to do link prediction and complete missing
relations in an interpretable way, but not capable of identi-
fying errors and handling literal facts. How to exploit the
embedding methods to learn more complex rules for more
tasks still needs a lot of exploration and endeavor.

What’s more, RuleHub [136] aims to build an extensible
corpus of rules for public KGs, where the rules are learned
by existing methods like AMIE and RuDiK, and evaluated
by both statistical metrics and human beings. These rules
can be used as metadata and help to manage quality for
public KGs. And [137] proposes a human-in-the-loop rule
learning approach, where a GAN-based method is used to
learn a confidence score for each rule, and a game-based
crowdsourcing framework is devised to refine the rules,
showing means to combine machine and human intelli-
gence in rule learning.

5.3 Ontology Rules

In the context of Semantic Web, ontology reasoning and
RDF validation have been studied for a long time and many
constraint languages have been designed, which can be
used as constarint rules for quality management. [177] gives
a clear classification that such languages can be either exist-
ing frameworks like the RDF query language SPARQL [178]
and the web ontology language (OWL) [179], or specific lan-
guages only designed for validation, such as SHACL [180]
and ShEx [181]. And their execution is based on either rea-
soning or querying frameworks.

[182] proposes 81 types of constraints for various data
applications, studies the role of reasoning for each con-
straint type, and compares the expressivity of five com-
monly used constraint languages. And [183] is another
survey to overview and compare the characteristics and
expressiveness of different RDF validation languages, hop-
ing to point out directions for further development of such
constraint languages. Based on these studies, Meester et al.
[138] present a rule-based reasoning framework for RDF
validation, which relies on N3Logic and EYE reasoner, and
is independent of constraint languages. It can identify
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constraint violations and generate root cause explanation,
which helps to discover false assertions as well as error pat-
terns in KGs. In [139], [140], DBpedia ontology is aligned to
the foundational ontology DOLCE-Zero, which is then used
to reason on the graph and cluster conflicts for identifying
systematic errors. And [141] adopts description logic axi-
oms as constraints and learns to fix constraint violations
from the edit history of KBs, and their evaluation on Wiki-
data shows significant improvement.

As for the querying framework, SPARQL language is
usually used as the constraint rules. In [142], an ontology-
based data quality management architecture is proposed,
where generic SPARQL query templates are defined to dis-
cover data quality problems including syntax errors, miss-
ing types, unique value violations, value range excess and
functional dependency violations. Further more, Kontokos-
tas et al. [143] create a set of 17 Data Quality Test Patterns
(DQTP) to cover common quality issues according to their
analysis on DBpedia, which can be instantiated into
SPARQL queries and tested on the RDF dataset. They adopt
these queries to evaluate five LOD datasets and reveal
many quality issues. This work is then integrated into a
platform called RDFUnit4, where test cases can be created in
five ways: changing from RDFS/OWL constraints, enrich-
ing constraints by tools like DL-Learner [184], re-using tests
based on common vocabularies, instantiating existing
DQTPs and writing own DQTPs. This set of templates
points out common types of KG errors and can be directly
used by running SPARQL queries, and at the same time
serves as an important bridge between machine learning
and domain experts, which is a potential method for KG
quality assessment and problem detection.

5.4 Graph-Pattern Rules

In recent years, more and more works start to propose rules
dedicated to graphs, where graph patterns are often
included in rule bodies.

Following the research paradigm of dependencies in
relational data, Fan et al. propose graph functional depen-
dency (GFD) [144] and a set of extensions [148], [149], [150],
[151], [152], which provide means to specify the semantics
of the schemaless graphs and help to identify and correct
quality issues. These graph dependencies are defined in the
form of Q½x�ðX ) Y Þ, where Q½x� is a graph pattern, and X
and Y are conjunctions of literals of x. A basic GFD has two
types of literals: constant literal x.A = c, where c is a constant
and A is an attribute except for id, and variable literal x.A =
y.B, where A and B are attributes that are not id. Literals are
extended in GED [147], [148] to support id literals to express
keys, and in NGD [149] to contain linear arithmetic expres-
sions and built-in comparison predicates. And in [152],
timestamps are associated to the variables to specify the
time span, which forms into TGFD to handle temporal
graphs. This kind of definitions combine classic attribute
dependencies with topological structures of graphs, able to
express dependencies like those in relational data, and at
the same time deal with the heterogeneity and flexibility of
graphs.

Graph dependencies have stronger expressive power in
comparison with those in relational data, and it is harder to
mine and reason as well, which is studied in detail in [145],
[148]. A parallel scalable algorithm for discovering GFDs is
developed in [146], which combines pattern mining and
functional dependency discovery in a single process and
provides effective pruning strategies, showing the feasibil-
ity and scalability to find frequent and reduced GFDs in
large graphs. The extracted graph dependencies are capable
of capturing various semantic constraints on graphs, and
can be used to detect errors and inconsistencies as well as
completing and correcting issues in terms of KG quality
management. [144], [151] and [149] explore parallel and
incremental algorithms to detect errors and [150] attempts
to deduce certain fixes based on the rules with the assistance
of user interaction. This line of research has solid theoretical
foundation, but actually effective algorithms are just getting
started.

Apart from these graph dependencies, association rules
with graph patterns (GPARs) are proposed in [153], which
aims to mine frequent patterns in the graphs that can be
used to predict missing relations. Its semantics are not suffi-
cient to handle other quality issues, which are extended in
[154]. In that paper, association rules, graph functional
dependencies and even machine learning classifiers are
incorporated into a uniform framework, which makes use
of both rule-based and ML-based methods and is able to
capture and solve incomplete and inconsistent information.
And [155] develops graph temporal association rules
(GTARs) to capture temporal associations of complex
events.

Some rules focusing solely on graph-repairing are stud-
ied. Neighborhood constraints (NC) are used to detect and
repair vertex labels in [156], [157], where several approxi-
mate algorithms are proposed to solve the NP-hard prob-
lem. [158] and [159] consider three kinds of repairing
semantics including incompleteness, conflicts and redun-
dancies, and design the Graph-Repairing Rules (GRRs) with
corresponding repairing algorithms, which have similar
structures with GFD while adding more literal types to
carry out more kinds of repairing operations.

What’s more, Belth et al. [160] adopt the idea of compres-
sion in information theory that compression techniques can
find patterns in data and in turn reveal anomalies. They
therefore use labeled and rooted summarization graphs as
soft rules and build a system called KGist, to show what is
normal and then identify strange and missing information.
They learn the summarization based on the Minimum
Description Length principle, and experiments of error and
incompleteness identification on real KGs demonstrate the
efficiency and effectiveness of such rules.

5.5 Other Rules

In addition to the above methods, there are some other rules
for KG quality management.

In [161], class hierarchy is used to automatically determine
obligatory attributes in graphs, which can be used to assess
the completeness, identify missing information and help to
improve the coverage. [162] presents RDFind, a distributed
system to discover conditional inclusion dependency (CIND)4. http://rdfunit.aksw.org
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in RDF data. Though not directly applied to quality manage-
ment, CIND is capable of describing inclusion semantics and
identifying quality issues. In order to speed up the process of
detecting and explaining inconsistency in large KGs, [163]
gives an abstraction-based framework to find ontology rules
on the partitioned graph modules, where their main focus is
on splitting and summarying the graph and identifying
inconsistency explanations from localmodules.

Some works pay attention to uncertain knowledge bases,
where Markov Logic Networks (MLNs) and probabilistic
soft logic (PSL) are often used. [164] presents ProbKB, a
probabilistic knowledge base which uses a relational DBMS
to infer missing facts by an efficient SQL-based inference
algorithm. [165] uses a numerical extension of MLN and a
set of Datalog constraints to detect inconsistencies in uncer-
tain temporal knowledge graphs (UTKGs), and a maximum
a-posteriori inference (MAP) is carried out to get a most
probable and conflict-free temporal KG. And TeCoRe [166],
a system for temporal inference and conflict resolution in
UTKGs is developed, where domain experts specify rules
and constraints to be reasoned by several MLN and PSL
solvers to detect and remove noisy temporal facts. These
works need more effort on the problem of scalability and
the automatic derivation of rules.

In summary, rule is a classic and enduring symbolic
resoning technique and various types of rules have been
proposed and adopted in KG quality management. Rules
are highly interpretable and partially reusable, able to
absorb human intelligence and transfer among different
datasets. They can identify and solve various quality issues
in a uniform framework with high precision, and such
methods generally don’t require to learn dataset-specific
hyper parameters, showing advantages different from sta-
tistical methods. However, it is always a challenging task to
obtain useful rules. No matter by manual writing or
machine mining, the collected rules are hard to be complete
and probably to cover only a subset of patterns in KGs. And
there is always a trade-off between expressivity and com-
plexity of the rules. How to select appropriate rule form
with tolerable time and space overhead for different task
requirements remains to be further explored.

6 HYBRID METHODS

Here we talk about hybrid methods, where more than one
technique of human intelligence, statistical/learning means
and rule reasoning play an important role.

6.1 Human & Statistics/Learning

Due to the intractability of many realistic problems, human
intelligence is often introduced in automatic methods and
the technique of human-in-the-loop is helpful in the entire
machine-learning pipeline [185]. In terms of KG quality
management, methods combining human and statistics are
showing great potential.

In [186], [187], a human and machine cooperation frame-
work, HUMO, is proposed for entity resolution, which aims
to divide the workload between human and machine such
that a given quality requirement can be met with minimal
cost. They present three optimization approaches based on
monotonicity assumption of precision, sampling and hybrid

techniques, which solve the problem of entity redundancy
and are potential to be applied to other quality issues. [188]
proposes a human-in-the-loop outlier detection approach,
where humans are introduced to check the candidate out-
liers generated by the unsupervised algorithms. To discover
all outliers with minimum human efforts, clustering and
question selection methods are adopted. Based on whether
noisy type labels and additional annotations are used, [189]
categorizes typing error detection methods into four para-
digms and experimentally shows that semi-supervised
noise models are the most feasible and effective solution.
They combine a neural network architecture with a probabi-
listic noise model for the type error detection task, where an
active learning algorithm is used to iteratively get human-
verified gold labels and the learning-rate is dynamically
adjusted.

6.2 Human & Rules

There is a natural connection between rules and humans
that rules can be created and examined by human experts,
but this interaction is long neglected in researches. [137]
presents a human-in-the-loop rule learning framework with
high coverage and high quality, where candidate rules are
first generated by machine algorithms and evaluated by a
GAN-based method to get a confidence score, and then a
game-based crowdsourcing framework is devised to refine
the rules. It also tries to sovle the possible conflicts when
using various rules. In [172], embedding techniques and
user feedback are used interactively to assess the quality of
a particular rule, which leads to better estimation of the con-
fidence score than simple statistical measures.

Human and rules can also work together in a quality
management process. Arioua and Bonifati present a user-
guided KB repairing method based on update in [190],
where tuple-generating dependencies (TGDs) and contra-
diction detecting dependencies (CDDs) are used as the logic
rules to give candidate repairing suggestions, and the final
repairing strategy is further guided by user interaction, by
which means the repairing can be implemented semi-auto-
matically to meet the user’s requirements.

6.3 Statistics/Learning & Rules

As two classic reasoning methods, there is a two-way inter-
action between statistics and rule techniques. On the one
hand, rule learning often comes with statistical metrics to
define the confidence, and many embedding methods are
adopted to guide the rule learning process [133], [134]. On
the other hand, rules can serve as additional resources to
assist embedding learning [92]. And apart from these inter-
actions, statistics and rules can have more diverse ways to
promote and complement each other in processes of knowl-
edge graph quality management.

In [191], a fine-grained evaluation for knowledge graph
completion is conducted on several rule- and embedding-
based systems, where the test sets are partitioned by
involved rule types. Experiments show that both rule- and
embedding-based methods have problems in solving cer-
tain types of completion tasks and an ensemble learning
method is proposed to combine these two families of
approaches, where ensemble weights are learned for each
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realtion to fully utilize the advantages of different methods
on different tasks. [192] attempts to correct erroneous asser-
tions of entities and literals with the help of both deep learn-
ing and rule reasoning. In this framework, multi-relational
sub-graphs are extracted according to semantic relatedness
for each identified wrong assertion, where a link prediction
model is learned by both semantic embeddings and
observed path and node features to predict possible substi-
tutions. And semantic consistency checking with property
range and cardinality constraints is then conducted to help
to make the final correction decision. Experiments on two
datasets have shown the effectiveness of this framework on
both general and enterprise KGs.

[193] proposes a new iterative framework to learn
embeddings and rules at the same time and make their
advantages complement to each other. This framework con-
tains three parts: (1) embedding learning based on existed
triples and those inferred by rules; (2) rule learning assisted
by embeddings; and (3) axiom injection to add new triples
derived by rules into KGs. These steps are conducted itera-
tively during training. In this process, rules and the injected
triples help to improve the embedding quality on sparse
entities, embeddings assist to learn more quality rules more
efficiently, and the whole performance to complete missing
facts is improved, which shows the huge charm of interac-
tive learning.

In [154], rule-based and machine learning-based methods
are further unified, where embedding-based ML classifiers
are incorporated into the rules as predicates, i.e., a ML clas-
sifier here becomes part of the rule itself. They define graph
association rules (GARs) that have similar semantics like
GFDs [148], and any well-trained ML classifiers can be
added into the literal constraints. Theoretical analysis and
parallel incremental inference algorithms are well studied,
showing a new direction to combine rule and ML
techniques.

6.4 Human & Statistics/Learning & Rules

Hao et al. [194] together use machine learning, human-in-
the-loop approach and logic rules to detect outdated facts in
KGs. In this framework, a binary classifier is trained with
features like historical update frequency and time span to
predict the likelihood of each fact being outdated, then veri-
fication is conducted by humans and the human answers
are further expanded by logic rules to get new facts, which
are added back to the machine classifier. The processes
move on iteratively until the accuracy requirement is met.

To sum up, each family of human-, statistics- and rule-
based methods has deficiency and limitation for knowledge
graph quality management, and their combinations are
showing great potential with many researches proposed.
How to design more delicate methods to make full use of
these different technologies remains an open question
worth exploring.

7 DISCUSSIONS AND FUTURE WORK

To give readers an overall perspective about the literature,
we plan to conclude some key issues and propose several
future directions here. Specifically, in Section 7.1 we discuss

about what is focusing on and what is missing in existing
works, and in Section 7.2 we recommend what is next.

7.1 Discussions

7.1.1 Technologies

Human can take part in all processes of knowledge graph
quality management with high precision and interpretabil-
ity, and human-based methods are quite common in prac-
tice. But due to the scale of real-life KGs, it is impossible for
humans to check all facts and purely artificial methods do
not arouse much academic interest. Recent works start to
study the sample framework to assess KG quality with
accuracy guarantee and acceptable cost, showing a great
potential in both theory and practice. And crowdsourcing
technologies are introduced to identify and correct KG
issues. But these works mainly focus on dimensions of accu-
racy and sometimes completeness that other dimensions
with delicate user interactions remain to be explored.

Statistics-based methods are listed in Table 1, which dis-
plays main works with not only processing goals, target
dimensions and typical techniques, but also the object types
like relation and attribute, and the column of resources is
used to show whether external information is introduced.

We can conclude that, from traditional outlier detection
and classic machine learning algorithms, to those various
embedding-based techniques that gradually replace manual
feature engineering, the statistics-based methods have
shown their efficiency and strong ability for KG quality
management, especially in error detection (e.g., outlier
detection techniques) and graph completion (e.g., link pre-
diction by embedding methods). And the embedding-based
deep learning and neural networks are playing important
roles in more fields than quality management.

However, it can be seen from the table that most of these
works are limited in tasks of error detection and graph com-
pletion with dimensions of accuracy and completeness,
showing their deficiency in handling various problems and
dimensions. Statistics-based methods learn from the data,
which may perform poor when the dataset has many qual-
ity issues such as errors and sparsity, and therefore how to
incorporate external resources into such methods is becom-
ing a popular direction. And most of these works (especially
those embedding-based ones) focus mainly on relations and
overlook the semantic dependencies of attributes and literal
values, which is worth further exploring. What’s more, this
type of methods is known for poor interpretability and com-
plex parameter selection, and thus further research is
required on model interpretation and transferring learning.

Rule-based methods are concluded in Table 2. This table
is organized according to the four-step framework of rule
definition, rule extraction, rule assessment and rule applica-
tion with corresponding works and techniques. And for
rule application, target goals, dimensions and objects are
also listed. The elements with placeholder ’/’ mean the
issues not paid attention to by the papers.

From Table 2, it is clear that rule-based methods have
attracted much research interest with various forms of rules
as well as extraction, evaluation and application techniques
being proposed. Most researches on predicate logic rules
pay main attention to efficient rule mining algorithms and
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the most used evaluation strategy is statistical measures,
except that [136] and [137] introduce humans to assist the
assessment. Closed horn rule is the most adopted rule form
for predicting missing relations. Some attempt to enhance
the expressivity for more tasks, like [129] to discover both
positive and negative rules with literal comparisons so that
error detection and attribute issues can also be handled. The
mined rules are used directly, where the complexity and
possible conflicts during the application is omitted by these
works and further research needs to be done.

Ontology rules generally show more powerful expressiv-
ity to cover various quality dimensions. Both reasoning-
and querying-based methods mainly commit to defining an
integrated error detection framework with existing con-
staint languages or formulated query templates, and the
rules are usually obtained by human-written, where [141] to
mine from edit history and [143] to learn from data make
some progress. Besides, it remains to be explored that how
these ontology rules can be used for other tasks like graph
completion and error correction.

Graph-pattern rules incorporate graph structures into the
rule body, which are capable of expressing complex seman-
tics and coping with more tasks. As technologies dedicated
to graphs, they are attracting more and more attention in

recent years, and various types of rules are proposed with
different expressivity for different task requirements. The
main extraction technique for these rules is to discover fre-
quent graph patterns with statistical measures, and reason-
ing is used to check and reduce the mined rules. Though in
works of graph dependencies it is suggested to check the
rules by experts before actually using, the interaction is not
studied yet. Many of these works notice the complexity of
rule application, and they have made some attemption on
parallel or incremental algorithms for large-scale knowledge
graphs. Graph-pattern rules are showing huge potential in
KG quality management, but they are still in the initial stage,
where more effective extraction, evaluation and application
algorithms need to be proposed, and a general rule form
with flexible and optional complexity is to be determined.

Besides, other kinds of rules such as probabilistic soft
logic are also studied for KG quality management. And
they also face the problems of rule extraction, trade-off
between complexity and expressivity as well as scalability
on large graphs.

Hybrid methods are shown in Table 3. As the advantages
and disadvantages of different types of methods sum-
maried in Table 4, hybrid methods have the ability to com-
bine the strengths of different techniques and many

TABLE 1
Summary of Statistics-Based Methods

Paper Goals Dimensions Objects Techniques Resources

[86] (2013) GC CP ET statistical distribution KG
[65] (2014) ED, GC A, CP ET, R statistical distribution KG
[66] (2014) ED A NA outlier detection methods KG
[67] (2014) ED A NA outlier detection with external

links
KG, sameAs links

[68] (2014) ED A L outlier detection with feature
engineering

KG, sameAs links

[85] (2014) GC CP R web fact validation KG, web, query logs
[71] (2015) ED A NA supervised machine learning KG
[74] (2015) ED A, T R, A web fact validation KG, web
[80] (2015) ED A A outlier detection with external

resources
KG, reference entity sets

[84] (2015) EPD A ET, R, A Bayesian analysis KG
[69] (2016) ED A, CS ET, R, A supervised machine learning KG, ontology
[72] (2017) ED A R supervised machine learning KG
[76] (2017) ED A R, A web fact validation KG, web, query logs
[79] (2017) ED A A semantic matching KG, external KGs
[81] (2017) ED A R(IsA) graph based models KG
[87] (2017) EC A, R E supervised machine learning KG, external links
[82] (2018) ED A, CS R, A graph exploration KG
[75] (2019) ED A R, A web fact validation KG, web, text corpus
[83] (2019) ED A R neural network KG
[73] (2020) ED, EPD, EC A E, R supervised machine learning KG, external links
[96], [97], [98], [99],
[100], [101], [102], [103],
etc.

GC CP ET, R embedding (translational
distance model)

KG

[104], [105], [106], [107],
[108], etc.

GC CP ET, R embedding (tensor
decomposition model)

KG

[109], [110], [111], [112],
[113], [114], [115], [116],
[117], [118], etc.

GC CP ET, R embedding (deep learning
model)

KG

[92], [94], [119], etc. GC CP ET, R embedding (with additional
information)

KG, external resources

Abbreviations used: Goals (A = Assessment, ED = error detection, EPD = error pattern derivation, EC = error correction, GC = graph completion), Dimensions
(A = accuracy, CS = consistency, CP = completeness, T = timeliness, R = redundancy), Objects (E = entity, ET = entity type, R = relation, A = attribute, NA =
numerical attribute, L = link).
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TABLE 2
Summary of Rule-based Methods

Rule Type Paper(s) Rule Extraction Rule

Assessment

Rule Application

Goals Dimensions Objects Techniques

Predicate Logic

Rules

AMIE [48],

[125], [126]

operator

expansion

statistical

measures

GC CP R /

RDF2Rules

[127]

frequent pattern

mining

statistical

measures

GC CP R, ET /

[128] revision of

learned rules

statistical

measures

GC CP R, ET /

RuDiK [129],

[130]

incremental

graph exploration

statistical

measures

ED, GC A, CS, CP R, A /

[131] operator

expansion

statistical

measures

A CP R /

AnyBURL

[132]

graph path

exploration

statistical

measures

GC CP R /

RLvLR [133] sample &

embedding

statistical

measures

GC CP R /

[134] embedding & text

corpus

statistical

measures

GC CP R /

DRUM [135] neural networks end-to-end GC CP R /

RuleHub

[136]

existing methods

like AMIE

statistics &

human

ED, GC A, CS, CP R, A /

[137] machine learning machine &

human

ED, EC, GC A, CS, R, CP E, R label aggregation

methods

Ontology Rules reasoning-based [138] given constraints

like SHACL

/ ED, EPD A, CS R, A logic reasoning

[139], [140] ontology

mapping

/ EPD A, CS, CP, R R, A, ET clustering

[141] mining from edit

history by AMIE

statistical

measures

EC A, CS, CP R, ET sorting by

confidence

querying-based [142] instantiating

templates by

hand

human ED A, CS, CP R, ET, A sparql querying

RDFUnit [143] automatic/semi-

automatic/

manual

human ED A, CS, CP, R R, ET, A sparql querying

Graph-pattern

Rules

graph dependencies GFD [144],

[145], [146]

frequent pattern

mining

reasoning &

human

ED A, CS, CP R, ET, A parallel subgraph

matching

GED [147],

[148]

frequent pattern

mining

reasoning &

human

ED A, CS, CP, R R, ET, A, E parallel subgraph

matching

NGD [149] frequent pattern

mining

reasoning &

human

ED A, CS, CP R, ET, A parallel

incremental

algorithm

GFix [150] frequent pattern

mining

reasoning &

human

ED, EC A, CS, CP, R R, ET, A, E parallel chasing

algorithm

GDD [151] frequent pattern

mining

reasoning &

human

ED, EC R E algorithm for entity

resolution

TGFD [152] frequent pattern

mining

reasoning &

human

ED A, CS, CP, T R, ET, A parallel

incremental

algorithm

graph association rules GPAR [153] frequent pattern

mining

statistical

measures

GC CP R parallel algorithm

GAR [154] frequent pattern

mining & ML

statistics &

reasoning

ED, GC A, CS, CP, R R, ET, A, E parallel

incremental

algorithm

GTAR [155] event & frequent

pattern mining

statistical

measures

GC CP, T R subgraph matching

graph repairing rules NC [156],

[157]

neighborhood

distribution

statistical

measures

ED, EC A, CS ET approximate

algorithms

GRR [158],

[159]

frequent pattern

mining

reasoning EC A, CS, CP, R T, E, A decomposition-

and-join strategy

graph summarization KGist [160] graph

summarization

MDL

principle

ED, GC A, CS, CP, R R, ET, A, E subgraph matching
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researches are proposed for various combination frame-
works in recent years. It is an ascendant and potential field
to be further explored.

7.1.2 Goals

Looking back into the previous tables, one interesting find-
ing is that most works focus only on tasks of error detection
and graph completion, while other quality management
processes like assessment, error pattern deduction and error
correction are generally overlooked. Quality assessment is a
necessary step to quantify the fitness of KGs for down-
stream tasks and for further improvement. A few explora-
tions have been done by manual sampling [53], [56] and
rules [131], [161], but the problems of granularity and vari-
ous dimensions remain unsolved. Error pattern deduction
helps to find out the causes of errors so that the KG quality
can be improved from the source. Statistics- and rule-based
methods have a little preliminary attempt on this task [73],
[84], [140] and more work is required. Error correction is
long recognized as an intractable problem even in relational
data. As it is possible to introduce new errors in the correc-
tion process, purely automatic methods are often avoided.
Human can play an important role in this task and we are

pleased to see more and more rules and hybrid methods are
proposed to cope with it.

Additionally, most of the works pay attention to only one
or two goals and few of them try to give an overall frame-
work to cover all problems. We say that rule-based methods
have such ability, but out of the complexity they typically
focus on one thing. Further study on a flexible and unify
overall solution is therefore recommended.

As for the target objects, relation has the most focus,
while attributes, expecially the semantic dependencies in lit-
eral values are required to be further studied.

7.1.3 Dimensions

Though we have tried our best to search for works on differ-
ent kinds of quality dimensions, it has to be admitted that
accuracy and completeness have attracted the most atten-
tion. Besides, outlier detection techniques and expressive
rules can identify inconsistent facts in the graphs so that the
consistency issue is being solved gradually. But there are
still many unanswered questions about redundancy and
timeliness. A possible explanation for the lack of researches
on timeliness issues is that KGs with rich time information
are not common at present. And redundancy is often

TABLE 3
Summary of Hybrid Methods

Paper Goals Dimensions Objects Type Techniques

[186], [187] (2018) ED R E H-S workload distribution with quality assurance
[188] (2020) ED A, CS NA H-S clustering and question selection methods
[189] (2021) ED A, CS ET H-S neural network, probabilistic model, active learning
[137] (2018) ED, EC, GC A, CS, R, CP E, R H-R machine learning, GAN, crowdsourcing
[172] (2021) ED, GC A, CS, CP R H-R machine learning, embedding, interactive learning
[190] (2018) EC CS R, A H-R human-machine interaction
[191] (2018) GC CP R S-R ensemble learning
[192] (2020) EC A, CS R, A S-R deep learning, consistency reasoning
[193] (2019) GC CP R S-R joint learning framework
[154] (2020) ED, GC A, CS, CP, R R, ET, A, E S-R machine learning, rule reasoning
[194] (2020) ED A, CS, T R, A H-S-R machine learning, interactive learning

Abbreviations used: Goals (A = Assessment, ED = error detection, EPD = error pattern derivation, EC = error correction, GC = graph completion), Dimensions
(A = accuracy, CS = consistency, CP = completeness, T = timeliness, R = redundancy), Objects (E = entity, ET = entity type, R = relation, A = attribute), Type
(H-S = human + statistics, H-R = human + rules, S-R = statistics + rules, H-S-R = human + statistics + rules).

TABLE 2
(Continued )

Rule Type Paper(s) Rule Extraction Rule

Assessment

Rule Application

Goals Dimensions Objects Techniques

Other Rules [161] statistical model statistical

measures

A CP A /

RDFind [162] frequent pattern

mining

statistical

measures

/ / / /

[163] input ontology / ED, EPD CS R, ET abstraction &

reasoning

ProbKB [164] input rules / GC CP R parallel sql-based

inference

[165] input Datalog

constraints

/ ED, EC CS, T R MLN reasoning

TeCoRe [166] expert input human ED, EC CS, T R MLN reasoning

Abbreviations used: Goals (A = Assessment, ED = error detection, EPD = error pattern derivation, EC = error correction, GC = graph completion), Dimensions
(A = accuracy, CS = consistency, CP = completeness, T = timeliness, R = redundancy), Objects (E = entity, ET = entity type, R = relation, A = attribute).
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considered as the task of entity disambiguation in the pro-
cess of KG construction and fusion, so the detection and
elimination of redundancy on built KGs are not talked
much. Although inaccuracy and incompleteness are indeed
the two most common KG quality problems, more research
should be undertaken to investigate other dimensions to
present a comprehensive view of knowledge graph quality
management.

7.2 Future Work

The findings above show a number of important implica-
tions for future practice, which are listed below.

Overall Solution. The ultimate goal of quality manage-
ment is to get satisfactory knowledge graphs, which lies in
three progressive processes of assessment, problem discov-
ery and quality improvement, as well as various dimensions
and objects. However, most current works focus only on
some of the process goals and dimensions, and therefore a
flexible and configurable framework for all kinds of task
requirements is in urgent need.

Various Dimensions. Knowledge graph quality issues go
beyond inaccuracy and incompleteness. And thus other
dimensions like timeliness and redundancy need to be paid
more attention to.

Objects Beyond Relations. Regardless of human-, statistics-,
rule-based or hybrid methods, we can see that relation is the
most targeted object. However, literal attributes also play an
important role in KGs. How to identify and correct literals
with rich semantics and infinite values by automatic meth-
ods remains a cool research area.

Human Participation. Humans are the initial source and
ultimate beneficiary of knowledge, and manpower plays a
significant role for quality management in industrial scenes.
But academic researches on this are not enough. How to
introduce human intelligence in more ingenious ways for
more tasks is still lacking.

Combination Strategies. Different types of techniques have
their own advantages and disadvantages, where hybrid
methods can make them complement to each other. For
example, rules and human intelligence may be potential
supplements to improve the interpretability of deep learn-
ing models. It remains to be further studied for various
combination strategies, especially a framework to put
humans, statistics and rules together.

External Resources. As there are potential quality issues in
the input KGs, learning purely from the data is prone to be
misled. Therefore how to incorporate external information
and knowledge to correct the deviation is a rising and
promising direction.

Efficiency and Scalability. Although various researches
have been done to cope with large-scale knowledge graphs,
the problem of efficiency and scalability is by no means
solved. More studies on actually usable algorithms, such as
parallel, incremental, or approximate strategies, are still
required.

Dynamical Knowledge Graphs. Most existing works focus
mainly on static graphs. However, real-life KGs often evolve
with time. As the emerging of more and more temporal
knowledge graphs [195], quality management on dynamical
KGs may become a research hotspot in the future.

Taken together, knowledge graph quality management is
a comprehensive research topic covering various tasks,
dimensions and objects. And there is an internal integration
of data, rules, manpower and learning models behind the
means. No matter focusing on dedicated or general meth-
ods, static or dynamic graphs, theory or application algo-
rithms, there is broad research space worth exploring.

8 CONCLUSION

In this paper, we present a comprehensive survey on
knowledge graph quality management, from basic concepts
of quality issues, dimensions and metrics, to various works
on different quality management processes. A new and in-
depth taxonomy is proposed to look deep into the existing
methods. And in the end, we discuss some key issues and
provide several directions for further researches. We believe
that this work can not only give a clear overview of current
researches, but encourage more opinions and solutions for
KG quality management.
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