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Abstract—Subgraph isomorphism plays a significant role in
many applications, such as social networks and bioinformatics.
However, due to the inherent NP-hardness, it becomes challenging
to compute matches efficiently in large real-world graphs. Many
researchers have attempted to solve this problem with the help
of new hardware. Nevertheless, most of them focus on GPU.
Due to the dataflow feature and burst I/O optimization, FPGA
is a potential competitor to speed up subgraph isomorphism.
However, there are very few subgraph matching algorithms on
FPGA. In this paper, we present an efficient FPGA-friendly
Subgraph Isomorphism algorithm FASI, designed on CPU-
FPGA heterogeneous platform which leverages FPGA’s features.
Unlike the existing FPGA-based method FAST, we adopt the
worst-case-optimal-join-based pipeline design. First, we propose
an FPGA-friendly data structure LPCSR for efficient access to
neighbor lists. Second, we offer a joint parallelized pipeline
strategy to accelerate matching process. Third, we propose a
memory coalescing mechanism and a space-saving pre-allocated
write back strategy. Our experiments on both synthetic and
real graphs show that FASI outperforms other state-of-the-art
subgraph matching algorithms on CPU, GPU and FPGA.

Index Terms—FPGA, Subgraph Isomorphism, WOJ, Pipeline

I. INTRODUCTION

In recent years, subgraph matching has played an increas-
ingly important role in many graph analysis tasks. It aims
to find all distinct subgraphs of a data graph G that are
isomorphic to a query graph Q. For example in Figure 1,
given a query graph Q and a data graph G, there is one
match of Q over G, i.e., {(u0, v12), (u1, v6), (u2, v0), (u3,
v13)}. In practice, subgraph matching (also known as subgraph
isomorphism) has attracted much attention in academia and
industry. It has been widely used in various domains, e.g.,
social network analysis [1]–[3], protein-protein interaction
network analysis [4], [5], chemical compound search [6],
graph pattern mining [7], [8] and RDF query processing [9],
[10]. However, it is challenging to efficiently compute all
matches of Q over a larger G since subgraph isomorphism
is a classical NP-hard problem [11]. Therefore, speeding up
subgraph matching on massive graphs is the focus of our work.

Extensive research has been conducted to find solutions
for speeding up subgraph matching on CPUs [12]–[19] and
most of them adopt the backtracking approach [20], [21].
The approach follows the idea of depth-first search, which
recursively maps the next query vertex to a data vertex to get
all matches. Although existing algorithms on CPUs propose
many optimization techniques on matching orders, pruning
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Fig. 1. Subgraph Matching

rules, and index structure using various heuristic methods,
the search space is still large when handling massive graphs.
Meanwhile, general-purpose CPUs cannot provide a high
degree of parallelism and flexible cache mechanism. As a
consequence, asking for hardware assistance is a better choice.

Recently, many works have devoted much effort to speed
up subgraph matching by leveraging massively parallel com-
putation capability of GPUs [22]–[26]. They are proved to be
effective in improving the performance of subgraph matching.
In fact, FPGAs also have advantages over CPUs on paral-
lelism, thanks to the data stream transfer without instruction
decoding and pipeline processing. Meanwhile, compared to
GPUs, FPGAs have larger on-chip memory and lower power
consumption [27]. Therefore, FPGAs are often used for accel-
erating artificial neural networks for machine learning appli-
cations [28]–[31] and some common graph algorithms [32]–
[34]. However, there are few subgraph matching algorithms
developed on FPGA, except for FAST [35], the only existing
FPGA-based subgraph matching solution.
FAST generates an auxiliary data structure CST (candidate

search tree) as a complete search space when handling a query
graph. Then it adopts an edge verification method to enumerate
all matches. However, FAST suffers from the heavy overhead
of generating CST on CPU at the query runtime. In addition,
the edge verification method leads to lots of redundant work
because the candidates of a query vertex are usually a lot and
a large number of partial results do not need to be expanded.

Generally, there are three main challenges when developing
subgraph matching algorithms on FPGAs:

• Limited On-chip Memory. The on-chip memory of up-to-
date FPGAs includes Block RAM (BRAM) and Ultra-
RAM (URAM). Because the size of total on-chip memory



on FPGA is as small as only tens of megabytes, large
graph data cannot be stored into on-chip memory directly.
Thus, FPGA needs off-chip memory (DRAM) to store
graph data, but how to optimize DRAM memory access
to fetch a vertex’s neighbors is critical in improving the
performance. Furthermore, the size of intermediate results
is quite large in the subgraph matching process. Tra-
ditional worst-case-optimal-join (WOJ) based subgraph
matching systems [24], [36], [37] should materialize the
whole intermediate results, which is infeasible to cache
them on on-chip memory unless flushing them to DRAM,
but writing to DRAM is quite slow.

• Low Clock Frequency. Because FPGA has a lower
clock frequency than GPU and CPU (e.g., 300MHz
vs. 2.4GHz), it needs higher parallelism to get better
performance. This requires us to design high parallelism
subgraph matching algorithms using FPGA’s features,
such as dataflow. Existing backtracking-based solutions
on CPU are difficult to be parallelized on FPGA.

• Parallel Write Conflicts. When multiple pipelines need
to write their corresponding results to DRAM, the same
address may be written, leading to writing conflicts.
Therefore, how to ensure the correctness of the concur-
rently outputting results is also a question to consider.

To address the above challenges, we propose an effi-
cient FPGA-friendly Subgraph Isomorphism algorithm FASI,
which conducts the whole subgraph matching process on
FPGA using the pipeline evaluation strategy. Different from
FAST, we adopt the WOJ strategy on FPGA. To speed up
the process, we first propose an FPGA-friendly data struc-
ture (LPCSR in Section V) to support efficient neighbor list
fetching. We call an algorithm or a data structure FPGA-
friendly since they take advantage of some specific optimiza-
tion techniques for FPGA (such as burst I/O and dataflow
features in FPGA) to get better performance. Moreover, we
propose a pipeline evaluation to parallelize the whole subgraph
matching process using FPGA’s dataflow, which increases
the parallelism and reduces on-chip memory requirement.
More detailed discussions can be found in Section IV-B. We
summarize our contributions as follows:

• We propose an efficient CPU-FPGA co-designed sub-
graph matching algorithm using WOJ-based pipeline join.
We exploit FPGA’s dataflow feature to implement a left-
deep-tree-based pipeline join accelerator for WOJ. To
reduce random memory access and increase continuous
memory access to DRAM, we design a coalescing mech-
anism on FPGA, which exploits burst I/O on FPGA using
AXI protocol.

• We propose an FPGA-friendly data structure LPCSR to
represent labeled graphs. It not only reduces memory ac-
cess to DRAM when getting a vertex’s neighbors but also
improves the spatial locality of memory access, which
further improves the performance of memory coalescing.

• To address writing conflicts on FPGA, we propose a
space-saving pre-allocated write back strategy, which

increases a little space overhead and eliminates writing
conflicts.

• We conduct experiments on both synthetic and real graph
datasets. The results show that our algorithm outperforms
the state-of-the-art algorithms by several orders of mag-
nitude (e.g., up to 11.35x over the CPU-based solution
CECI [38], up to 33.95x over the only existing FPGA-
based solution FAST and up to 53.9x over GpSM [23]).

II. PRELIMINARY

A. Problem Definition

In this paper, we focus on undirected vertex-labeled graphs,
although it is trivial to extend our approach to handle directed
and edge-labeled graphs. We define the subgraph isomorphism
search as follows.

Definition 1 (Graph). A graph G is a tuple G = {V,E,L},
where V (G) is a set of vertices, E(G) ⊂ V (G) × V (G) is
an edge set and L is a labeling function that assigns vertex
labels.

Definition 2 (Subgraph Isomorphism). Given a query graph
Q and a data graph G, Q is subgraph isomorphic to G if
and only if an injective mapping function M from V (Q) to
V (G) exists such that ∀u ∈ V (Q), L(u) = L(M(u)) while
∀(u, u′) ∈ E(Q), (M(u),M(u′)) ∈ E(G), where M(u) is the
mapped data vertex of u.

There may be various subgraph isomorphisms in G, each
of which is referred to as an embedding of Q in G.

Definition 3 (Subgraph Isomorphism Search). Given a query
graph Q and a data graph G, the subgraph isomorphism
search problem is to find all embeddings of Q in G.

Due to the NP-hardness of subgraph isomorphism, we resort
to hardware assistance. In this paper, we propose an efficient
FPGA-based solution for subgraph isomorphism search. Table
I lists the frequently-used notations throughout the paper.

TABLE I
FREQUENTLY USED NOTATIONS.

Notation Description
Q and G Query graph and data graph

V (G) and E(G) Vertex set and edge set of G
L(G) A labeling function of G
d(u) Degree of vertex u
M(u) Mapping of u in an embedding M
C(u) Candidate list for query vertex u
N(v, l) Neighbor list of vertex v with label l

B. Worst Case Optimal Join

Generally, subgraph matching can be solved by a series of
join operations. A join operation refers to extending the partial
embeddings by matching a new query edge or vertex, while
the former is called binary join and the latter is worst-case
optimal join (WOJ).

This paper focuses on developing an FPGA-based WOJ
due to two reasons: First, the WOJ provides a better worst-
case performance guarantee; Second, the binary join cannot
avoid parallel writing conflicts except for join-twice output
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scheme [39] in the parallel processing. WOJ can alleviate
that by forecasting the cardinality of extending each partial
embedding [24], and we propose a space-saving pre-allocated
strategy (in Section VI). A typical WOJ algorithm enumerates
over vertices of query graph Q in a given matching order
O(Q) = {o0, ...ok, ...o|V (Q)|−1}. Let Pk be the set of partial
embeddings consisting of {o0, ..., ok}. At each iteration, a join
operation extends all partial embeddings in Pk by calculating
the intersection among the candidate set of ok+1 and each of
the neighbor sets of oi for every (oi, ok+1) ∈ E(Q), where
i ≤ k. As shown in Figure 2, we match the query graph in
Figure 1(a) and the current partial embedding set is P2 =
{{v9, v8, v3}, {v10, v4, v0}, {v12, v6, v0}} and the next vertex
is o3 = u3 with C(u3) = {v13, v14}. In this case, extending
the third embedding can be formalized as {v12, v6, v0} ×
{N(v12) ∩N(v6) ∩ C(u3)} = {{v12, v6, v0, v13}}.
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Fig. 2. Worst-case optimal join on graphs

C. FPGA Architecture

A field-programmable gate array (FPGA) is an integrated
circuit made from configurable logic and memory blocks,
which can implement any user-defined logic by connecting
logic and memory units with configurable wires. It usually
serves as a co-processor of the CPU for accelerating compu-
tation. As shown in Figure 3(a), CPU and FPGA are connected
via PCIe and equipped with private memory units (main
memory for CPU and global memory for FPGA). In this paper,
we focus on two optimization techniques for efficient FPGA-
based algorithms: burst I/O and dataflow.
Burst I/O. Processing a memory request on FPGA follows
the AXI protocol. Each memory request has an AXI head
for auxiliary information. Figure 3(b) illustrates an example
of three memory read requests. Without burst I/O, they are
processed one by one. However, the AXI protocol allows us
to aggregate consecutive memory requests to DRAM in burst
mode, handling continuing memory reads after parsing the first
AXI head until receiving all required data. This feature invokes
us to design a memory coalescing technique to aggregate
memory requests as much as possible by tolerating redundant
memory access.
Dataflow. The dataflow in FPGA provides a possibility of
implementing the pipeline execution hardware-level model-
based query processing. A database query is decomposed into
a pipeline of operations, such as the left-deep join tree [40],
in which intermediate results are passed to the next operation
as soon as they are generated. The traditional query pipeline
evaluation is at the software level, which is first transferred
to a set of CPU instructions. However, with the dataflow

model in FPGA, we can directly create on-chip computation
modules, design the dataflow between them and skip the
overhead of generating, fetching, and decoding instructions
as shown in Figure 3(c). This feature motivates us to design
an end-to-end FPGA kernel containing multiple concatenated
join operation modules during subgraph matching. Partial
embeddings are passed in a streaming way between these
modules in the dataflow model. To the best of our knowledge,
we are the first to propose an FPGA dataflow-based query
pipeline implantation in graph databases, especially for WOJ.

III. RELATED WORK

A. CPU-based Subgraph Matching

The early study of subgraph matching can be traced back to
Ullmann’s backtracking algorithm [20], which uses a depth-
first search strategy to match query vertices. Many subsequent
works [12], [14], [15], [17] focus on reducing the search space
by different optimization strategies. A comprehensive survey
on these algorithms has been conducted by Lee et al. [21].
Later, TurboISO [18] and BoostISO [16] exploit vertex
similarity to merge query vertices and data vertices to reduce
redundant computations, respectively. CFL-Match [19] de-
velops a Core-Forest-Leaf decomposition and proposes CPI
structure for pruning. CBWJ [41] optimizes subgraph matching
by combining binary and worst-case optimal joins. CECI [38],
and DAF [42] replace the edge verification method with the set
intersection strategy to find candidates faster. RapidMatch
[43] combines exploration-based and join-based methods.
However, these CPU-based solutions suffer from performance
issues for large graphs due to low parallelism.

B. GPU-based Subgraph Matching

The earlier works [25], [44] on GPU try to transplant exist-
ing CPU-based subgraph matching algorithms. Unfortunately,
these backtracking-based algorithms suffer from warp diver-
gence and uncoalesced memory access on GPU, as Jenkins
et al. [45] analyzed. Later, GpSM [23], and GunrockSM [22]
adopt the breadth-first search strategy for higher parallelism
on GPU, which demonstrates better performance. They both
adopt the edge-oriented join strategy for matching and the
two-step output scheme to avoid writing conflicts, which have
increased the computation workload. GSI [24] proposes a
Prealloc-Combine approach, which uses the vertex-oriented
join strategy and pre-allocates enough memory space to avoid
joining twice. However, these GPU-based solutions cannot
effectively handle large graphs that are not fit into GPU’s
global memory.
C. FPGA-based Subgraph Matching

FAST [35] is the first and only existing FPGA-based
subgraph matching algorithm. It proposes an auxiliary data
structure CST to serve as a complete search space and a
partitioning strategy to make each CST fit into FPGA’s BRAM.
It adopts the edge verification method to enumerate matches on
FPGA, which brings many redundant verifications. Moreover,
CST needs to be rebuilt on the CPU for each query graph. This
brings extra runtime overhead and affects the performance.
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IV. OVERVIEW OF FASI

Our FASI system consists of the CPU host and the FPGA
kernel, as shown in Figure 4(a). The CPU host preprocesses a
data graph G and generates candidates and a join order O for
a given query graph Q. The FPGA kernel, which has multiple
processing engines (PEs) and is PCIe-attached to the CPU
host, receives input from the CPU host and performs specific
subgraph matching tasks to find all matches of Q in G.

A. The CPU Host

At the offline processing, for better memory coalescing in
the FPGA kernel at the running time, the CPU host reorders G
to make vertices whose neighbor lists are often visited together
as adjacent as possible and the amount of wasted read data
(during burst read) as small as possible. More details will be
discussed in Section VI-A2. After reordering, we construct an
FPGA-friendly data structure LPCSR (proposed in Section V)
for G and offload LPCSR to FPGA’s off-chip memory through
PCIe bus. The entire data preprocessing phase is offline.

At the query runtime, given a query graph Q, we use two
simple yet effective filtering strategies (LDF and NLF1) to
generate candidate lists C(u) for each query vertex u. Note
that many sophisticated candidate generation strategies [19],
[38], [42] can also be used in this stage, and we focus on the
FPGA-based subgraph matching process, and the candidate
generation strategy is orthogonal to our method. We use
a heuristic strategy to determine the join order O of Q,
which is often used in other subgraph matching algorithms
[24], [38] as well. Specifically, we greedily select unext =
argminu∈V (Q′)

|C(u)|
d(u) as the next query vertex, where C(u) is

generated by LDF and NLF, V (Q′) is the set of query vertices
that have not yet been matched. Generally, at the running time,
the CPU host transfers the candidate lists and the join order to
FPGA’s off-chip memory through the PCIe bus and launches
the FPGA kernel to compute subgraph matching.

B. The FPGA Kernel

One of our major technique contributions is to fully utilize
FPGA’s dataflow feature to implement the pipelined evalua-
tion. We follow the generic join developed by Ngo et al. [47],
which evaluates queries using a vertex-at-a-time strategy. If
we adopt the materialized evaluation in the traditional WOJ
systems (such as GraphFlow [36], EmptyHeaded [37],

1The label and degree filtering (LDF) and the neighbor label frequency
filtering (NLF) are defined in [46].

etc), we have to flush intermediate results to DRAM in each
join step since the on-chip memory size is too small to cache
them even though we use both BRAM and URAM. This is
time-consuming because of the limited bandwidth of DRAM.
FAST [35] partitions CST to make sure each CST partition
does not exceed the on-chip storage capability, but it launches
multiple cross-device data transfers and does not make full use
of PCIe bandwidth. Our pipelined evaluation on FPGA not
only reduces the requested buffer size significantly but also
hides the transmission cost between CPU and FPGA. Besides
the pipeline parallel processing, we build multiple PEs, which
process distinct parts of the start vertex’s candidates in parallel.

We describe the PE structure in Figure 4(b). It consists
of a candidate reader 1⃝, a series of extension modules 2⃝
and a result writer 3⃝. To reduce the time-consuming data
transfer between DRAM and BRAM, we maintain a series
of FIFO buffers using both BRAM and URAM in our design.
URAM has more storage capacity and BRAM has faster access
speed. Therefore, we use BRAM to store the neighbor lists
and candidate vertices accessed from DRAM and use URAM
to cache the partial intermediate results avoiding frequently
flushing them to DRAM. The candidate reader reads a batch
of candidate vertices into the candidate buffer on BRAM.
Along the given join order, each extension module expands
the intermediate results of the previous step using the next
query vertex and writing the newly generated intermediate
results into the intermediate result buffer on URAM. There
is an intermediate result buffer between each two extension
modules. The result writer will write the final results in the
final result buffer to DRAM.

(1) Specifically, based on the given join order O, each PE
can be represented as a left-deep join tree for WOJ as follows:

Definition 4 (Left-Deep Join Tree for WOJ). Given a join
order O = {u0, ..., un−1} and the candidate lists C(ui) for
each query vertex ui (i = 0, ..., n− 1), the left-deep join tree
T for WOJ is defined as follows:

• T is a left-deep binary tree with n leaf nodes fi, each of
which corresponds to a query vertex ui;

• Each inner node oi (i = 1, ..., n − 1) corresponds to a
subquery (of the query graph Q) induced by the first i+1
query vertices in Q, denoted as Q[0,i].

Figure 4(c) shows an example of the left-deep join tree for
the query graph Q in Figure 1(a) and Algorithm 1 gives an
FPGA-based pipeline evaluation for subgraph matching (basic
version). Assume that the join order is {u0, u1, u2, u3}. Each
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leaf node corresponds to one query vertex ui and its candidate
list C(ui). Each inner node oi corresponds to an extension
module (Lines 13-14 in Algorithm 1) between matches of
subquery Q[0,...,i−1] (i.e., M(Q[0,...,i−1])) with C(ui). We
adopt eager pipelining, in which the lower level operator
eagerly passes the results to the higher level one (Lines 20-
22) and does not wait for the higher level one to request the
results. Thus, we maintain a buffer Pi (in URAM) (Lines 2-4)
to cache the results generated by the lower-level operator.

Besides the pipeline-based parallelization can improve the
performance, pipeline-based evaluation can address the scala-
bility issue due to limited on-chip storage capability. Although
the number of partial embeddings is large and the buffer size
is limited by the total on-chip storage capability (including
BRAM and URAM, <35M in our case), due to the pipeline
design, the on-chip memory requirement is reduced greatly.
Thus, we can implement the whole subgraph matching process
on FPGA, avoiding swapping intermediate results to DRAM
and reduce the data dependency to maximize the pipelining
parallelism and hide the data transmission cost.

(2) As mentioned above, each inner node of the left-deep
join tree T corresponds to an extension module, which in-
cludes a neighbor reader and a series of intersection modules.
The neighbor reader accesses neighbor lists from DRAM, and
the intersection modules conduct set intersection operations.
Specifically, for each extension module, we also design it as
a set-intersection tree as follows:

Definition 5 (Set-intersection Tree). Given a partial match m
corresponding to the subquery Q[0,...,i−1] and the next query
vertex ui with label l, assume that ui is connected to p query
vertices in Q, denoted as [uj0 , ..., ujp−1 ] (p < i). The set-
intersection tree corresponding to extending m with ui is a
left-deep binary tree, where each leaf node corresponds to a
query vertex uj and its label-constrained neighbors N(uj , l)
except for the right-most leaf node that corresponds to the
next query vertex ui and its candidates C(ui).

The dashed box of Figure 4(c) is an example of the set-
intersection tree corresponding to the last extension module
when evaluating the query graph Q in Figure 1(a). Specifically,
we propose a pipeline set intersection algorithm on FPGA in
Algorithm 2. In each step, we do pairwise intersection (Lines

Algorithm 1: FPGA-based pipeline WOJ (basic)
Input: Query Graph Q, Data Graph G and a join order

{u0, ..., un−1}
Output: All matches of Q over G, denoted as M .

1 M ← ∅ ; /* M is located at off-chip DRAM */;
2 /* Pi is located at on-chip URAM */;
3 for i← 0 to n− 1 do
4 Let Pi be the partial result buffer, set Pi ← ∅ ;
5 for i← 0 to n− 1 pipeline do
6 ui, C(ui) ← next query vertex and its candidates;
7 if i == 0 then
8 foreach v ∈ C(ui) do
9 P0.enqueue(v);

10 else
11 foreach partial match m ∈ Pi−1 pipeline do
12 Pi−1.dequeue(m);
13 /*Call Algorithm 2 to extend m with ui*/;
14 Let B = m× Extend(m,ui);
15 /*the last query vertex*/;
16 if i == n− 1 then
17 /*Add matches B into M in DRAM */;
18 M = M ∪B ;
19 else
20 /*Push generated partial matches into Pi*/;
21 foreach m′ ∈ B do
22 Pi.enqueue(m′);

23 return M ;

5-15 in Algorithm 2). We also adopt the eager pipelining
(Lines 8, 12, 15) and maintain a common vertex buffer
Bi (Lines 1-3). In the first step, we conduct merge-based
intersection. Once finding one common vertex, we push it into
the upper buffer (Lines 6-8). The upper operator fetches each
vertex v from the buffer and checks the existence over another
vertex’s neighbor list (i.e., the right child leaf node) by binary
search (Lines 9-12). The top-level module checks the existence
of the candidates of the next query vertex using hash search
since we represent its candidates by the bitmap (Lines 13-15).
Once we get a common vertex v in the top-level intersection in
Algorithm 2, we concatenate the original size-i partial match
m with v (i.e., m⊕ v) and push it into Pi (in Algorithm 1).

V. DATA STRUCTURE: LPCSR

Due to I/O irregularity of graph data, memory access cost
bottlenecks the performance of subgraph matching on FPGA.
In this section, we propose a FPGA-friendly data structure
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Algorithm 2: Extend(m, ui)
Input: Partial match m[v0, ..., vi−1] corresponding to

subquery Q[0,...,i−1], next query vertex ui with label
l, ui is connected to p query vertices in Q, denoted
as (uj0 , ..., ujp−1) (p < i)

Output: Mappings of ui satisfying edge constraints.
1 /* Bi is located at on-chip BRAM */;
2 for i← 1 to p do
3 Let Bi be the temporal intersection, set Bi ← ∅ ;
4 Let data vertices (vj0 , ..., vjp−1) (in m) match query vertices

(uj0 , ..., ujp−1) ;
5 for i← 1 to p pipeline do
6 if i == 1 then
7 Do merge intersection between N(vj0 , l) and

N(vj1 , l) ;
8 Push common vertices to B1 once found ;
9 if 1 < i < p then

10 foreach vertex v into buffer Bi−1 do
11 binary search v over N(vji , l);
12 Push v into Bi once finding v in N(vji , l);
13 if i == p then
14 hash search over bitmap representation B(ui) ;
15 Push v to Bp once finding the common vertex v;
16 return Bp;

called Label-Partitioned Compressed Sparse Row (LPCSR)
(Definition 7), which leverages the burst I/O mode.

In WOJ-based subgraph matching algorithms, one frequent
operation is to access a vertex v’s neighbor list N(v, l) whose
neighbor vertex label is l. In the traditional CSR structure,
all vertices’ neighbors are consecutively arranged without
label-based partitioning. Thus, to access N(v, l), CSR needs
more redundant memory access and filtering computation. To
improve the efficiency of accessing N(v, l), GSI [24] proposes
a GPU-friendly data structure named Partitioned Compressed
Sparse Row (PCSR). It partitions the data graph based on
labels2. To address the non-consecutiveness of vertex IDs
caused by graph partitioning, it hashes vertex IDs to a set
of fixed-size hash buckets called groups and reorganizes CSR
based on group IDs. When accessing N(v, l), GSI computes
the group ID that v is hashed to and uses a warp to search
the group concurrently to locate N(v, l). Due to hash conflicts,
multiple groups may be probed to find the overflowed vertices.
PCSR [24] is not suitable for FPGA for two reasons. First,

PCSR has the higher probability of group overflows on FPGA
because the memory transaction bandwidth of FPGA is only
64B, but that of GPU is 128B, which means more groups may
be fetched to locate N(v, l). Second, the hash technique in
PCSR cannot guarantee the access locality and is detrimental
to burst I/O. For example, given two consecutive vertices v1
and v2, they may be hashed into groups far from each other.
Thus, the system has to launch two separate read operations
to fetch them rather than one burst read.

Therefore, to make full use of burst I/O for efficient access
to N(v, l), we propose the LPCSR structure (Definition 7). We
divide a data graph G into a set of neighbor label-partitioned
graphs G(l) as follows:

2 [24] partitions the data graph based on edge labels, and the operation
N(v, l) is also based on edge labels.

Definition 6 (Neighbor Label-Partitioned Graph). Given a
graph G and a vertex label l, the Neighbor Label-Partitioned
Graph (denoted as G(l)) is a subgraph of G induced by all
edges adjacent to at least one labeled-l vertex.

An example of G(B) that contains all edges adjacent to
B-labeled vertices in G is given in Figure 5.

A

BB

C

v0

B BB

C D

v4

v11

v5

v12

v6 v7 v8

v13 v14

A

C

D

v3

v9

C
v10

Fig. 5. a neighbor label-partitioned graph G(B) of G in Figure 1(b)

An efficient data structure should support locating N(v, l) in
O(1) time and read N(v, l) in the linear time (O(|N(v, l)|)),
which is the design goal of our proposed LPCSR. Given a
data graph G, we partition it into k neighbor label-partitioned
graphs G(li), i = 0, ..., k−1. For each G(li), we first build the
traditional CSR Ri. Due to the non-consecutiveness of vertex
IDs in the partitioned graph (e.g., no vertices v1 and v2 in
G(B) in Figure 6), we propose two extra levels in LPCSR.

Index List idx. The position of each vertex vj in the vertex
array of the CSR Ri corresponding to partitioned graph G(li)
if vj ∈ G(li), j = 0, ..., |V | − 1, i = 1, ..., k, are collected
sequentially to form an array, called index list, idx.

Example 5.1. Given the data graph G in Figure 1(b), we
construct LPCSR in Figure 6. v0, v3 and v14 are three vertices
in the vertex array of the CSR of G(B). Their positions in
the vertex array are 0, 1, and 7, respectively. For v0 and v3,
because they do not have neighbors labeled A, we will store
0 and 1 in their first elements in idx, respectively. For v14,
because its first element in idx stores its position 9 in the
vertex array of the CSR of G(A) , 7 will be stored in its
second element.

v1 ...
0 2 32

v0

nsa
v14

idx

...

...
6

v3

...

v4 v6 v7 v7 ... v7

0 3 ... 13 14
v0 v3 v14

vertex array

edge array

CSR of G(A) CSR of G(C) CSR of G(D)CSR of G(B)

0 0 1 0 ... 1 3 ... 9 7 9

v0 v1 v3 v14

B B BA CC C CD

0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0
A B C D

... ...

Fig. 6. LPCSR structure

Neighborhood Structure Array nsa. For each vertex vj , j =
0, ..., |V |−1, we record vj’s starting offset in idx and existence
bitmap B(vj). B(vj) has k bits and ‘1’ in the i-th bit denotes
vj ∈ G(li), i = 0, ..., k − 1. All vertices’ starting offsets and
existence bitmaps are concatenated to form nsa.

Example 5.2. As shown in Figure 6, nsa has 15 elements,
where each element corresponds to a vertex’s neighborhood
structure in Figure 1(b). For example, v1’ neighborhood struc-
ture consists of a 32-bit offset and a 4-bit bitmap. The offset
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Fig. 7. Joint parallelized pipeline

records the starting position of v1 in idx, which is 2. The
bitmap is 0011, which means v1 only exists in the vertex
arrays of the CSRs of G(C) and G(D).

Definition 7 (LPCSR structure). Given a data graph
G(V,E, L), LPCSR has four levels, including index list idx,
neighborhood structure array nsa, vertex arrays, and edge
arrays in the traditional CSRs.

In LPCSR, the top two levels nsa and idx aim to rapidly
locate a vertex v’s neighbor list N(v, l) with neighbor label
l. If the l-th bit of v’s bitmap in nsa is ‘1’, we will get the
position of v in the vertex array of the CSR of G(l) from idx.
The rest are multiple CSRs with different neighbor labels for
accessing N(v, l) consecutively and quickly.

Example 5.3. To illustrate how to locate a neighbor list in
LPCSR, we give an example of fetching N(v14, B) in Figure
6. First, we read v14’s corresponding element in nsa. The
beginning index of v14 in idx is 32, and the existence bitmap
is 1110. We check the 1-th bit of v14’s bitmap is ‘1’. Then we
count the number of 1 before this bit. In this case, the total
number is 1. Thus, we read the 33-th (32+1) element in idx,
which is 7. Finally, we read the 7-th element in G(B)’s vertex
array and get the offset of the edge array, which is 13.

VI. JOINT PARALLELIZED PIPELINE

To improve throughputs, a naive approach is to design mul-
tiple independent pipelines (Algorithm 1). However, multiple
independent pipelines do not share the intermediate results
while processing and may lead to workload imbalance. Thus,
we propose a joint parallelized pipeline strategy for WOJ-
based subgraph matching on FPGA, as shown in Figure 7.
We implement multiple-pipelines-in-one PE where they push
(or pull) intermediate results to (or from) the same on-chip
shared buffer. Such a design addresses workload imbalance
among multiple pipelines and provides more opportunities
for memory coalescing since more neighbor lists are fetched
from DRAM together. However, it also brings a new issue of
writing conflicts when final results are written back to DRAM
in parallel between different pipelines. To take optimization
opportunities and avoid writing conflicts, we design a memory
access coalescing mechanism to exploit burst I/O (discussed in
Section VI-A). Also, we propose a space-saving pre-allocated
write back strategy (discussed in Section VI-B).

A. Memory Access Coalescing

When adopting WOJ to match query vertices, most off-chip
memory transactions come from the neighbor lists transfer
from LPCSR on DRAM to BRAM. In the basic design,
each independent pipeline fetches neighbor lists directly from
DRAM. Although we can coalesce memory access inside each
independent pipeline, the joint parallelized pipelines provide
more opportunities to coalesce memory access. It is because
multiple pipelines share common buffers, and more access
requests are issued simultaneously.

1) Coalescing Mechanism: The memory controller will
coalesce the memory access requests of multiple partial results
from the partial result buffer with a coalescing width w, where
w is limited by the buffer size. In our experiments, we set
w = 8. Specifically, for those vertices with the same label l,
we compute the offsets of their neighbor lists in parallel. Then,
for these to-read neighbor lists, we measure the gaps among
them. If the gap between two vertices’ neighbor lists is below a
threshold δ, we will combine the read operations of these two
close neighbor lists by tolerating redundant data. The threshold
δ is affected by the configuration of the FPGA card and can
be measured experimentally, where it implies that the cost of
the burst read to the two neighbor lists is equal to the cost
of two random reads. After coalescing, the memory controller
will get groups of burst read requests and launch burst read
to fetch the data from DRAM into the on-chip shared buffer.

For example, as shown in Figure 8(a), there are three
random memory access requests to N(v1, l), N(v3, l) and
N(v5, l). We combine the three requests with two different
lists (i.e., N(v2, l) and N(v4, l)) to fetch them with a single
run of burst read instead of three random accesses. In this
case, N(v2, l) and N(v4, l) are redundant data.

a burst read

N(v1 , l) N(v5 , l)

a burst read

N(v3 , l)

N(v2 , l) N(v4 , l)

(a)

(b)

Fig. 8. A motivation example of graph reordering

2) Graph Reordering: We hope to coalesce more random
memory requests while suffering from less redundant data.
Since we store neighbor lists in vertex order, a different vertex
order influences the access locality and the wasted read cost.
To improve the efficiency of coalescing memory access on
FPGA, we can find a suitable order for burst read in pre-
processing phase based on the access locality and the wasted
read cost between vertices. Figure 8 depicts the motivation of
our graph reordering. After reordering, the wasted read of a
burst read by combing the three memory requests is reduced
significantly (=0) compared to before ordering. Although many
graph reordering methods have been studied in previous works
[48], [49], their contexts differ from ours. For example, Wei
[49] exploits vertex locality to rearrange vertex order to reduce

7



CPU cache miss ratio in a CPU cacheline. It does not consider
the waste read of accessing neighbor lists continuously.

Specifically, we re-order vertex IDs so that any two vertices
vi and vj’s neighbor lists are closer to each other in the edge
array of the LPCSR if and only if (1) they are often accessed
together during WOJ-based subgraph matching; and (2) the
size of gaps between their neighbor lists should be minimized.

We first partition vertices based on vertex labels into dif-
ferent groups to find a good vertex order. Then, we reorder
vertices in each group. Finally, vertices in different groups
are concatenated to obtain the vertex order. We focus on
reordering vertices with the same label in the following.

Definition 8 (Access Continuity Score). Given a graph
G = (V,E,L) with k vertex labels, the continuity score of
accessing vertices’ neighbor lists in G is defined as follows:

F (G,w, π) =
∑

l∈L(G)

∑
vi∈V (l)

j=i−1∑
j=max{0,i+1−w}

S(vi, vj) (1)

where π is a vertex ID assignment function (i.e., π(V) → {0,
. . . , |V |−1}), L(G) denotes all vertex labels, V (l) represents
all vertices labeled l, w is the coalescing width and S(vi, vj)
is the compactness between vi and vj , defined in Definition 9.

Definition 9 (Vertex Compactness). Given two vertices vi and
vj (j > i), the compactness between them considers common
neighbors and continuous access length from vi’s neighbor list
to vj’s neighbor list in LPCSR, formally defined as follows:

S(vi, vj) =
∑

l∈L(G)

|N(vi, l) ∩N(vj , l)|∑a=j
a=i |N(va, l)|

(2)

We demonstrate the vertex compactness of any two vertices
in Figure 9. The numerator |N(vi, l)∩N(vj , l)| is the number
of common neighbors labeled l between vi and vj . The
denominator

∑j
a=i |N(va, l)| is the access length between

N(vi, l) and N(vj , l), including needed read and wasted read.

N(vi , l) N(vj , l)

∑ j
N(va , l)

N(vi , l) ꓵ N(vj , l) 

a=i

N(vi , l)

N(vj , l)

Fig. 9. Compute vertex compactness

Definition 10 (Graph Reordering Problem). Given a graph
G = (V,E, L) and a coalescing width w, the graph re-
ordering problem is to find a vertex ID assignment function
π(V ) → {0, . . . , |V | − 1} to maximize the access continuity
score F (G,w, π).

Theorem 5.1 The graph reordering problem is NP-hard.

Proof. (sketch.) We prove this graph reordering problem is
NP-hard by reducing it to a maximum traveling salesman prob-
lem without returning to the start vertex, similar to [49].

Heuristic Algorithm. Due to the NP-hardness of this problem,
we propose a heuristic algorithm. Algorithm 3 shows the
pseudo codes about finding the order over vertex sets V (l) with
one label l. We can repeat the algorithm on vertex sets with
different labels and finally splice all vertices together because
ordering vertices with different labels is mutually exclusive.

Algorithm 3: LPGO Algorithm
Input: data graph G and the coalescing width w
Output: an order π of vertices labeled with l in G

1 /* cmn records the number of common neighbors between
vi and each vj added to π before vi in the current size-w
window */;

2 allocate w × |V (l)| × |L| three-dimensional array cmn ;
3 foreach v ∈ V (l) do
4 Fscore(v) ← 0, vis[v] ← 0;
5 select a start vertex vs, π[0] ← vs, vis(vs) ← 1;
6 maintain a priority queue q of length w;
7 for i← 1 to |V (l)| − 1 do
8 ve ← π[i− 1];
9 /* v′ and ve has one more common vertex v, thus,

update the corresponding item in cmn */;
10 foreach v ∈ N(ve) do
11 foreach v′ ∈ N(v, l) do
12 if vis[v′] == 0 then
13 cmn[(i− 1)%(w − 1)][v′][L(v)]++;
14 /* Fscore(v′) =

∑
S(vj , v

′), vj is added before v′

within size-w window*/;
15 compute Fscore(v′);
16 update the priority queue q using Fscore(v′);
17 vmax ← q.pop();
18 π[i] ← vmax, vis(vmax) ← 1;
19 return π;

B. Space-Saving Pre-allocated Write Back Strategy

Let us consider the last WOJ step of the running example
in Figure 7, which shows three partial matches corresponding
to subquery Q[u0,u1,u2] and the last join vertex is u3. Each
pipeline extends one partial match mi (i = 1, 2, 3) to obtain
final matches. When they write these final matches to DRAM
in parallel, write conflicts may occur. Other WOJ steps besides
the last one in the pipeline (Figure 7) also have writing
conflict issues due to a shared on-chip buffer. However, it
is cheap to use locking strategy for BRAM and URAM, but
it is costly to flush final results to DRAM by locking. To
avoid write conflicts, one naive solution is using two-step
output scheme like GpSM [23] and GunrockSM [22] on GPU.
In the first step, each processor performs a complete join
operation to count matches and calculate the output addresses
based on the prefix-sum. In the second step, each processor
performs the same join operation again and writes the results
to the addresses in parallel. However, this method doubles the
amount of work and thus suffers performance issues.

To avoid joining twice, GSI [24] proposes a Prealloc-
Combine approach, which allocates the minimum length of the
neighbor list of space for each partial match to avoid conflicts.
Considering m1, the allocated memory space for m1[v9, v8, v3]
is min(|N(v9, D)|, |N(v8, D)|, |C(u3)|), where |N(v9, D)|
denotes the number of labeled-‘D’ neighbors of v9 and |C(u3)|
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Fig. 10. Compute pre-allocated space

denotes the number of candidates for query vertex u3. How-
ever, only 30% of the pre-allocated space is resultful in GSI.

We propose a space-saving pre-allocated strategy in Figure
10. To extend mi, we intersect k sorted lists Li (i = 1, ..., k),
such as extending m1 by N(v9, D) ∩ N(v8, D) ∩ C(u3) in
Figure 10. We first find left and right, defined as follows.

left = max(min(xi|xi ∈ Li), i = 1, ..., k)
right = min(max(xi|xi ∈ Li), i = 1, ..., k)

Then, we count the number N of items whose values are
between left and right at the shortest list Li (i.e., the shaded
area in Figure 10). Finally, the allocated space for mi is N .
Our method always allocates less space than GSI for each
pipeline. Experiments show our method can improve the space
utilization up to 48% than GSI (see Table VI).

C. Optimization: FPGA-CPU Co-processing Strategy

Since our method performs the whole WOJ pipeline in
FPGA, after transferring the input to the FPGA kernel, the
CPU host is idle only to wait for returning final results. An
FPGA-CPU co-processing solution can improve the overall
performance. Due to the highly skewed degree distribution
of real-world graphs (like power-law distribution), extending
high-degree vertices will spend much more on-chip storage
space and thus reduce the width of memory access coalescing.
Fortunately, in a power-law distribution, there are only a few
vertices with high degrees. Therefore, we can move several
high-degree vertices to the CPU host.

Specifically, the CPU host divides the matching tasks into
two parts based on each candidate’s degree. The CPU will
process a small number of high-degree candidates, and the rest
of the low-degree candidates will be transferred to the FPGA
kernel. The partition threshold is determined in the following.

First, given a join order O, we denote that the forward
neighbors NO

+ (u) of a query vertex u are u’s neighboring
query vertices that are matched after u. Given a candidate
v of a query vertex u, we define its workload W (v) =∑

ui∈NO
+ (u)

∏
uj∈NO

+ (u)∧uj≤ui
|N(v, L(uj))|. Next, we parti-

tion candidates V into two parts VC and VF based on R,
where R is the maximum size of the buffer on BRAM,
VC = {vi|vi ∈ V ∧ min(dl(vi)) > R} and VF = {vi|vi ∈
V ∧ min(dl(vi)) ≤ R}. min(dl(vi)) is the minimum of
the label-constrained degrees of vi among different G(l),
which can be precalculated offline. Finally, we compute
CPU’s workload WC =

∑
vi∈VC

W (vi) and FPGA’s workoad
WF =

∑
vi∈VF

W (vi). If WC > tWF , finish. Otherwise, we
ceaselessly move vi with the maximum min(dl(vi)) from VC

to VF . The parameter t is measured experimentally.

VII. EXPERIMENTS

In this section, we evaluate the effectiveness of FASI and
present the experimental results.

Setup. We have implemented FASI in C++ under Xilinx
Vitis 3 2020.1 development environment. Both the CPU host
and the FPGA kernel are compiled by Vitis’s built-in g++
based complier. We use a CentOS Linux server with two
Intel Xeon Gold 5218 2.30GHz CPUs, 512GB host memory
and one Xilinx Alveo U200 Data Center Accelerator Card
for running CPU-based and FPGA-based systems. Meanwhile,
the GPU-based systems run on another CentOS server with
two NVIDIA Titan XP (3840 cuda cores and 12 GB global
memory). The FPGA accelerator card is equipped with 64
GB off-chip DRAM, 35 MB on-chip memory (including 7MB
BRAM and 28MB URAM), and 892,000 LUTs (Look-up
Tables). It is attached to the CPU host through PCIe Gen 3.0 ×
16. To avoid occasionality, when evaluating the elapsed time
of each query, we run it 5 times and report the result using
the average of the 5 runs.

TABLE II
CHARACTERISTICS OF DATASETS.

Dataset |V | |E| |L|a ADb MDc ACEd Typee

patents 3.7M 16.5M 20 8.8 793 0.08 r
Youtube 1.1M 2.9M 25 5.3 28754 0.08 r

LiveJournal 4M 34.2M 30 17.3 14815 0.28 r
Orkut 3M 117.5M 24 76.2 33313 0.17 r

WatDiv 86M 549.2M 32 12.6 44.6M 0.10 s
Twitter 42M 1.5B 32 70.5 3.1M 0.07 r

a-c |L|, AD and MD denote the vertex label number, the average degree
and the maximum degree, respectively.

d-e ACE and Type denote the average clustering coefficient and graph type
(r:real-world and s:synthetic.)

Comparative Algorithms. For performance comparison,
we evaluate our method with six state-of-the-art subgraph
matching algorithms, including three CPU-based solutions
CECI [38], DAF [42] and RAPID [43], two GPU-based
solutions GpSM [23] and GSI [24], and a FPGA-based solution
FAST [35]. To the best of our knowledge, there is only one
former solution on FPGA for subgraph matching. For the
CPU-based and GPU-based competitors, we choose the top
fastest ones in our experiments. All the source codes come
from the original authors and are also implemented in C++.

Datasets. We conduct our experiments on both real-world
and synthetic datasets. The characteristics of these datasets
are listed in Table II. We obtain two vertex-labeled graphs
(patents and Youtube) from [46] and randomly assign vertex
labels to other unlabeled graphs. Note that we only use the first
five datasets in Table II except for the scalability experiments,
since the basic version of our method (BASIC) and some
comparative algorithms cannot work on billion-scale graphs.

Queries. To keep the query graphs for various datasets
consistent, we randomly generate 50 unlabeled query graphs
as query templates varying the vertex number from 3 to 7
and the edge number from 2 to 16, including star-like, line-
like, clique-like, and hybrid. The maximum vertex number is

3https://www.xilinx.com/products/design-tools/vitis.html
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Fig. 11. Performance of optimization techniques

consistent with FAST. Then, we randomly assign a label to
each vertex for every unlabeled query graph.

Metrics. To evaluate the performance of an algorithm, we
measure the elapsed time in milliseconds from receiving a
query graph to outputting all results, which includes the CPU
execution time and the hardware accelerator execution time
(equal to 0 for CPU-based algorithms). To make each query
terminate reasonably, we set a time limit of 10 minutes. We
do not report the elapsed time if the query has timed out or
is out-of-memory.

A. Resource Utilization of the FPGA kernel

We set the number of PEs to 8 in the FPGA kernel to
maximize the on-chip resource utilization and the processing
throughput of FPGA. Table III reports the resource utilization
and the clock rate of our FPGA kernel. We can see that the
utilization rate of BRAM and URAM is high, indicating our
caching mechanism’s effectiveness.

TABLE III
RESOURCE UTILIZATION OF THE FPGA KERNEL

Algorithm LUT Register BRAM URAM Clock Rate
FASI 31.34% 14.87% 84.69% 59.24% 205MHz

B. Evaluating Optimizations in FASI

In this subsection, we evaluate three optimizations of FASI,
including task partitioning (TP), memory access coalescing
(MC), and joint parallelized pipelining (JP). We show their im-
provements in performance in Figure 11. We give FASI’s ba-
sic implementation using LPCSR and independent pipelining
without task partitioning and memory access coalescing, called
Basic. Then, we compare the performance improvement of
each optimization with the previous implementation by adding
the three optimizations to Basic one by one and report
speedup ratios over Basic. We denote the full-optimization
version as FASI, used in the following experiments.

Effectiveness of Task Partitioning. We have evaluated the
time gap between CPU and FPGA by varying t (A smaller
gap means a higher overlap). The results in Figure 12 indicate
t = 0.35 can achieve the best performance. After adding the
task partitioning optimization, FASI outperforms Basic on
every dataset by up to 6.8x (on Watdiv). The speed-up ratio
varies among datasets due to different skewed distributions.

For example, we can see that the most prominent perfor-
mance improvement is 6.8x on Watdiv, and the smallest is 2.2x
on patents. The reason is that the degree distribution on Watdiv

0.15 0.2 0.25 0.3 0.35 0.4 0.45
t
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p 
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Fig. 12. The normalized time gap ratio varying t

is skewed more than on patents. In BASIC, FPGA requires
to pre-allocate much more on-chip memory to process higher
degree vertices on Watdiv. Therefore, several very high-degree
vertices can significantly impact the performance of BASIC on
Watdiv. However, since the maximum vertex degree on patents
is not very large, the performance of BASIC on patents does
not become abysmal. Therefore, the performance improvement
of BASIC+TP is more evident on Watdiv than patents. In other
words, task partitioning is more effective for graphs with a
highly skewed degree distribution.

Effectiveness of Memory Access Coalescing. In BASIC,
there are many random off-chip memory accesses to fetch
required neighbor lists. To speed it up, we apply a memory
access coalescing mechanism, exploiting burst I/O on FPGA.
The memory controller will coalesce the read requests of
different vertices and transform them into burst reads to access
multiple consecutive neighbor lists. According to Figure 11,
the memory access coalescing optimization results in up to
2.0x improvements compared with Basic+TP. By tolerating
redundant data and exploiting the burst read, our memory
coalescing technique reduces the overhead of random memory
access to off-chip DRAM and thus improves performance.

TABLE IV
AVERAGE COALESCING RATIO AND SPACE EFFICIENCY (BEFORE AND

AFTER GRAPH RE-ORDERING).

Dataset without graph reordering LPGO
cra swrb cr swr

patents 35% 22% 52% 14%
Youtube 40% 26% 45% 18%

LiveJournal 29% 14% 54% 11%
Orkut 31% 21% 41% 13%

WatDiv 33% 19% 37% 17%
a,b cr: average coalescing rate; swr: space wasted rate.

We further demonstrate the efficiency of our graph reorder-
ing algorithm LPGO by two metrics: average coalescing rate
(cr) and space wasted rate (swr). We obtain the coalescing rate
by dividing the number of coalesced neighbor list accesses by
the total number of neighbor list accesses. This ratio indicates
the possibility of successful memory coalescing. The space
wasted rate is calculated by dividing the size of redundant
neighbor lists by the total size of coalesced read-in lists,
which reflects the space efficiency of the proposed coalescing
technique. Both metrics are attained from all queries on
five datasets. After reordering, the coalescing rate improves
significantly, especially on LiveJournal and Orkut, because of
their higher average clustering coefficient (0.28 and 0.17). The
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space wasted rate also goes down.

TABLE V
AVERAGE COALESCING RATIO AND SPACE EFFICIENCY (INDEPENDENT

PIPELINES VS. JOINED PARALLELIZED PIPELINES)

Dataset IP +JP
cr swr cr swr

patents 52% 14% 64% 15%
Youtube 45% 18% 52% 19%

LiveJournal 54% 11% 58% 11%
Orkut 41% 13% 46% 16%

WatDiv 37% 17% 39% 17%

Effectiveness of Joint Parallelized Pipelining. Figure
11 shows that the joint parallelized pipelining optimization
achieves a further speedup compared with BASIC+TP+MC
(up to 2.1x on patents). This is because: (1) all the pipelines
can get partial results as input in the shared buffer and thus
have balanced workloads; (2) the shared partial result buffer
provides more opportunities to coalesce memory accesses. We
demonstrate the performance improvement of memory access
coalescing using joint parallelized pipelining in Table V.

TABLE VI
THE TIME COST AND SPACE UTILIZATION USING TS, PC AND OUR

STRATEGY ON DIFFERENT DATASETS.

Dataset Time cost(ms) Space Utilization
TS PC ours TS PC ours

patents 28 18 20 100% 22% 54%
Youtube 15 10 11 100% 24% 42%

LiveJournal 459 292 302 100% 13% 61%
Orkut 1183 619 647 100% 15% 58%

WatDiv 12339 6706 6743 100% 18% 44%

In addition, when using joint parallelized pipelining, writing
back the final results generated by different pipelines lead
to conflicts. Thus, we propose a space-saving pre-allocation
strategy to avoid that and compare it with the traditional
two-step output scheme(TS) [22], [23] and Prealloc-Combine
approach (PC) used in GSI [24]. We compare two metrics: the
time cost and the space utilization (in Table VI). We can see
that our strategy obtains up to 1.83x speedup than the two-step
output scheme and up to 48% drop of the space cost than the
Prealloc-Combine approach.

C. Evaluating LPCSR structure

To verify the efficiency of LPCSR, we compare it with the
traditional CSR, and the GPU-friendly PCSR in GSI [24]. We
implement them in FASI and evaluate the average elapsed
time and the total space cost on multiple datasets in Table VII.
LPCSR reduces the average elapsed time by 11.4x than CSR
and 30% than PCSR. CSR without label-based partitioning
performs worse than the other two since it has higher memory
access cost and filtering cost. There are two reasons for the
unsatisfactory effect of PCSR. One is that the maximum width
of one memory transaction on FPGA is only half of the width
of a global memory transaction on GPU, resulting in fewer
elements in each group in PCSR and more groups to be
accessed when locating a vertex’s neighbor list. The other is
that successive vertices are hashed to different groups, which
lowers the possibility of coalescing memory access.

patents youtube LiveJournal orkut watdiv
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Fig. 13. Overall performance comparison of different algorithms

Furthermore, the space cost of LPCSR is also lower than
PCSR because PCSR creates lots of groups in order to reduce
the hash conflicts, and the space of many groups is wasted. If
the number of groups is reduced to lower space cost, the hash
conflicts will increase rapidly, and the performance of PCSR
will worsen. Due to introducing two extra levels, LPCSR
occupies more space than CSR, but it has much better time
performance.

We also report the offline build time of LPCSR in Table
VIII. We can see that it brings a certain amount of time
overhead. However, it is worthwhile and affordable because
the build time is a one-time expense and does not increase as
the number of queries increases.
D. Comparing with Existing Algorithms

Figure 13 reports the average query runtime of FASI
compared with existing algorithms CECI [38], DAF [42],
RAPID [43], GpSM [24], GSI [23] and FAST [35]. Note
that the results of GpSM and GSI on WatDiv are omitted
because they are out of memory. RAPID also reports an error
on WatDiv. As shown in Figure 13, FASI outperforms all
comparative algorithms and achieves 14.5x average speedup.

Compared with CPU-based algorithms. FASI outper-
forms DAF by 4.21x on average (from 1.38x to 6.21x), CECI
by 4.1x on average (from 1.31x to 11.35x) and RAPID by
2.02x on average (from 1.21x to 4.55x). The former two algo-
rithms also adopt WOJ to compute matches, and RAPID is a
hybrid of exploration-based and join-based methods. However,
they are serial algorithms with no pipeline parallelization, so
their performance is worse than our FPGA-based algorithm.

Compared with GPU-based algorithms.Our FASI outper-
forms GSI by 11.01x on average (from 2.11x to 20.85x) and

TABLE VII
AVERAGE ELAPSED TIME AND SAPCE COST OF FASI USING CSR, PCSR

AND LPCSR ON DIFFERENT DATASETS.

Dataset Time cost(ms) Space cost(MB)
CSR PCSR LPCSR CSR PCSR LPCSR

patents 229 32 20 161.6 487.2 206
Youtube 36 14 11 32 93.6 40.8

LiveJournal 1209 445 302 305.6 785.6 369.6
Orkut 1872 785 647 964 1902 1084

WatDiv 18465 7625 6743 5081.6 37417.6 9209

TABLE VIII
THE OFFLINE BUILD TIME OF LPCSR.

Dataset patents Youtube LiveJournal Orkut WatDiv
Time(s) 11.43 3.32 18.25 43.79 315.23

11



GpSM by 42.9x on average (from 9.41x to 53.9x). Both GSI
and GpSM adopt materialized evaluation in the whole WOJ
processing. Each join step has to output all intermediate results
to global memory on GPU and does not take the pipeline
parallelism in FASI. The performance of GpSM is even worse
because it adopts a two-step output scheme to avoid writing
conflicts, which brings a large amount of redundant work.
Furthermore, GPU-based algorithms GPSM and GSI often run
out of memory when processing queries on large datasets or
ones that produce lots of results (i.e., on WatDiv).

Compared with FPGA-based algorithms. FASI outper-
forms the only FPGA-based subgraph matching solution FAST
by 15.91x on average (from 2.62x to 33.95x). Different from
our method that the whole subgraph matching process is done
within FPGA, FAST consumes a lot of CPU workload to build
CST structure, which is quite time-consuming in FAST.
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Fig. 14. Elapse time on LiveJournal of different types of queries

Evaluating Different Query Structures. For a more de-
tailed comparison, we classify the queries based on their
structures into four categories: star-like, line-like, clique-like,
and hybrid. Star-like queries have only one vertex whose
degree is more than one. Line-like queries feature vertices
that form a line or a cycle. Clique-like queries are structurally
similar to a clique. Each vertex in such queries has at least two
neighbors. Hybrid queries are the combination of the former
three query types. Using LiveJournal as an example, we show
the specific runtime of four different types of queries.

As shown in Figure 14, FASI achieves a speedup of
4.1x on average in terms of star-like queries, thanks to our
special treatment for one-degree vertices that avoids producing
lots of intermediate results. In addition, compared with line-
like queries, FASI performs better on clique-like queries. In
other words, as the density of query graphs increases, the
acceleration ratio of FASI also increases. Our pipeline design
intended for WOJ plays a role here, as it fully utilizes the
computing resource when dealing with the intersection of
multiple lists. Such a gap is more expansive against FAST
since there are more non-tree edges to be verified in FAST
when queries are denser. Note that DAF can work better for
clique-like queries because its failing set pruning strategy is
more effective in dealing with this kind of query. Confronting a
hybrid query, FASI splits it into a dense subgraph and a set of
one-degree vertices for their respective processing. Therefore,
we can credit FASI’s advantage on hybrid queries(5.7x on
average) to all the techniques above.
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Fig. 15. Scalability test

E. Scalability
This subsection carries out the scalability test of FASI.
Varying the number of pipelines. We vary the number of

pipelines from 2 to 16 and run all the queries on patents. Figure
15(a) shows the increasing trend of the average speedup as the
number of pipelines increases. In general, the increase in the
number of pipelines only reduces the speedup of the individual
pipeline a little, thanks to our joint parallelized pipelining
and memory access coalescing, which lowers the possibility
of the limitation of multiple pipelines’ memory access. Note
that FPGA’s on-chip memory is limited. Thus the number of
pipelines is limited to FPGA’s on-chip resources.

Varying |E(G)|. To test the impact of data size on query
performance, we generate a series of datasets of different sizes
using Twitter by randomly sampling a given number of edges
(e.g., 10M, 50M, 100M, 500M, 1B). Figure 15(b) indicates the
average elapsed time of different algorithms on datasets with
different |E(G)|. Note that when the number of edges in the
data graph is over 100M, GpSM and GSI fail due to GPU’s
global memory limitations. Besides, the runtime of FAST rises
sharply as the data size grows larger because of the increasing
CST scale. In contrast, the runtime of FASI rises much more
slowly than others, which benefits from LPCSR and the space-
saving pre-allocated write back strategy.

VIII. CONCLUSION

This paper proposes an FPGA-friendly subgraph matching
algorithm (FASI), which utilizes FPGA’s burst read and
dataflow feature. Different from FAST that spends lots of time
in building CST at query runtime and only uses FPGA for edge
checking, FASI implements the whole WOJ-based subgraph
matching algorithm in FPGA. FASI exploits FPGA’s dataflow
feature to optimize the pipeline join. With the help of LPCSR
and the memory access coalescing, FASI can significantly
reduce the costly random memory access between BRAM
and DRAM on FPGA. Although the performance of FASI is
reduced when dealing with data graphs with too many high-
degree vertices, we mitigate this problem by moving a small
number of high-degree vertices to the CPU host. Our exper-
imental results on different datasets demonstrate that FASI
outperforms other state-of-the-art algorithms significantly.
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[24] L. Zeng, L. Zou, M. T. Özsu, L. Hu, and F. Zhang, “Gsi: Gpu-friendly
subgraph isomorphism,” in 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 2020, pp. 1249–1260.

[25] B. Yang, K. Lu, Y.-h. Gao, X.-p. Wang, and K. Xu, “Gpu acceleration of
subgraph isomorphism search in large scale graph,” Journal of Central
South University, vol. 22, no. 6, pp. 2238–2249, 2015.

[26] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan, “Gpu-accelerated
subgraph enumeration on partitioned graphs,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, 2020,
pp. 1067–1082.

[27] M. Besta, D. Stanojevic, J. D. F. Licht, T. Ben-Nun, and T. Hoefler,
“Graph processing on fpgas: Taxonomy, survey, challenges,” arXiv
preprint arXiv:1903.06697, 2019.

[28] A. Rahman, J. Lee, and K. Choi, “Efficient fpga acceleration of
convolutional neural networks using logical-3d compute array,” in 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2016, pp. 1393–1398.

[29] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional neural
networks with software-programmable fpgas,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2017, pp. 15–24.

[30] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high perfor-
mance fpga-based accelerator for large-scale convolutional neural net-
works,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2016, pp. 1–9.

[31] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi,
“Caffeinated fpgas: Fpga framework for convolutional neural networks,”
in 2016 International Conference on Field-Programmable Technology
(FPT). IEEE, 2016, pp. 265–268.

[32] S. Zhou, R. Kannan, H. Zeng, and V. K. Prasanna, “An fpga framework
for edge-centric graph processing,” in Proceedings of the 15th ACM
International Conference on Computing Frontiers, 2018, pp. 69–77.

[33] N. Engelhardt and H. K.-H. So, “Gravf: A vertex-centric distributed
graph processing framework on fpgas,” in 2016 26th International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2016, pp. 1–4.

[34] S. Zhou and V. K. Prasanna, “Accelerating graph analytics on cpu-
fpga heterogeneous platform,” in 2017 29th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD).
IEEE, 2017, pp. 137–144.

[35] X. Jin, Z. Yang, X. Lin, S. Yang, L. Qin, and Y. Peng, “Fast: Fpga-based
subgraph matching on massive graphs,” in 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2021, pp. 1452–1463.

[36] C. Kankanamge, S. Sahu, A. Mhedhbi, J. Chen, and S. Salihoglu,
“Graphflow: An active graph database,” in Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, S. Salihoglu, W. Zhou,
R. Chirkova, J. Yang, and D. Suciu, Eds. ACM, 2017, pp. 1695–1698.
[Online]. Available: https://doi.org/10.1145/3035918.3056445

[37] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré,
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