
gTop: An efficient SPARQL Query Engine

Yuqi Zhou1, Lei Zou1, and Gang Cao2

1 Peking University, Beijing, China
{zhouyuqi,zoulei}@pku.edu.cn

2 Beijing Academy of Artificial Intelligence, Beijing, China
caogang@baai.ac.cn

Abstract. In this demonstration, we present gTop, a top-k query en-
gine based on gStore which supports SPARQL queries over RDF databases.
gTop can answer top-k queries with high efficiency and scalability. We
use the DP-B algorithm for top-k queries and the DP-any algorithm for
any-k queries. We break cyclic queries into pieces of tree queries and
use DP-any to solve queries generated before assembling the results to
retrieve the origin answers. Experiments show the efficiency of gTop. We
provide a demonstration website to show the usage of gTop, where users
can query YAGO2 with top-k SPARQL queries.

Keywords: SPARQL · Top-k · Query Engine.

1 Introduction

Top-k queries can be expressed as queries with the ’LIMIT’ and ’ORDER BY’
clauses in SPARQL language. The ’ORDER BY’ clause specifies the ranking
criterion and the ’LIMIT’ clause tells the number of top-ranked results users
want. Fig. 1 shows an example of the SPARQL top-k query, which queries the
top-5 cities having the largest GDP and is the birthplace of a musician. Top-k
queries are a powerful tool to mine data information and are widely used by
analysts.

Fig. 1. An Example SPARQL Query

In this paper, we propose gTop, a new query engine specially designed for
SPARQL top-k queries. gTop is built upon the gStore database [5], which is
an open-source graph database using subgraph matching to answer SPARQL
queries.

2 Y. Zhou et al.

2 System Structure

The overview structure of gTop is depicted in Fig. 2. gTop uses different strate-
gies to answer acyclic and cyclic top-k queries. Acyclic queries are directly for-
ward into the top-k tree query solver, which uses the DP-B algorithm [2]. For
cyclic queries, gTop first breaks them into tree queries through the query splitter
and each sub-query will be evaluated by the any-k tree query solver. A con-
troller takes charge of the enumeration process by dynamically deciding which
sub-query to enumerate, and how many results should be outputted from the
sub-query. The sub-results are assembled and then transferred to the users.

Fig. 2. The Working Process of gTop

Top-k Tree Query Solver The basic structure of a SPARQL query can be
expressed as a graph, as shown in Fig. 1. If there is no cycle in the query graph,
we refer to it as an acyclic query, otherwise, we call it a cyclic query. For acyclic
top-k queries, the DP-B algorithm is the first linear algorithm proposed[2], which
is used and adapted in gTop. The top-k solver completes this task in two steps.
The solver first filters each variable’s candidates from top to bottom and then
enumerates the top-ranked result recursively from bottom to top.

Fig. 3. An Example to illustrate Dynamic Trie and Compressed Vector

DP-B uses a dynamic trie to solve the FQ-iterator Problem. The problem
focuses on enumerating top-ranked results from m ranked sub-lists, where each

gTop: An efficient SPARQL Query Engine 3

combination of elements from the m sub-lists makes a valid result and the score
is the sum of each element. For example, we want the min-3 results assembled
from 3 ranked lists. We use a sequence of integers to identify a combination.
Sequence 2 − 2 − 1 refers to the result made of the two 2nd elements from the
first two lists, and the 1st element of the last list. We observe that 1− 2− 1 and
2− 1− 1 are always no greater than 2− 2− 1 and we call 1− 2− 1 and 2− 1− 1
parents of 2− 2− 1.

In general, for sequences x1−x2− ...−xm and y1− y2− ...− ym, if ∃1 ≤ i ≤
m,xi = yi − 1, and ∀1 ≤ j ≤ m, j 6= i, xj = yj , we call x1 − x2 − ...− xm is the
parent of y1−y2− ...−ym. Easy to see, a sequence is the potential to be the next
result only when all its parents (if exists) have been enumerated. DP-B uses a
Dynamic Trie to record whether all parents of a sequence have been enumerated.
gTop adapts the DP-B algorithm for better performance in SPARQL queries, for
example, it contains auxiliary indexes to support predicate variables of triples.

Any-k Tree Query Solver Solving the cyclic top-k query is an NP-hard
problem. Some algorithms break the queries into tree sub-queries and assemble
the sub-results back[1, 4], where the top-k tree query algorithms may not work
well. For example, after getting the top-10 results, top-k algorithms may perform
a whole search to the top-20 results, making no use of the previous effort. Our
any-k tree solver treats k as dynamic, assuming no limit for the number of results
users want and maintaining a scalable memory structure when running.

As mentioned before, the DP-B algorithm uses a dynamic trie that uses multi-
layers of pointer arrays. The array size is fixed to k, limiting its ability to answer
any-k queries. For an example shown in Fig. 3, to query sequence 2− 2− 1, the
dynamic trie first visits the 2nd pointer in the first layer which points to address
addr1, and then the 2nd pointer in addr1, which maps to addr2, the information
of the sequence in the first slot in addr2.

Our any-k tree queries solver uses another dynamic structure we proposed,
Compressed Vector, to avoid the limitation. A compressed vector groups the
sequence by the sum of the numbers in sequence. For example, in terms of 3
sub-lists, 1− 2− 2 and 1− 1− 3 are classified into one group Layer 3, which is
composed of sequences summing to 5. A compressed vector maps each sequence
into one non-negative number, that is, the lexicographical order of the sequence
in the group.

Compressed Vector gets rid of the requirement to know k, avoids allocating
too many memory pieces, and reduces the time to access RAM. The translation
from sequences to integers (and the opposite direction also) is of low cost due to
the efficient translation algorithm we implement. Such a mechanism allows the
solver to continuously generate top-ranked results and is scalable to the data
size and k.

Query Splitter and Results Assembler gTop treats SPARQL queries as
subgraph isomorphism problems by treating the subject and object of a triple
as nodes in a graph as in Fig. 1. In SPARQL, a user can define scoring functions

4 Y. Zhou et al.

in literal values, which can only be objects of triples. According to this feature,
we design a heuristic strategy to split queries. Once we find a cycle in the graph,
we choose the edge with the worst selectivity to cut off. We keep cutting off
edges until the query becomes a tree query. Then we run the DP-any algorithm
to solve tree queries, once a result is enumerated, the results assembler checks
whether the cut edges can be matched in the newly enumerated result, if not,
ignore this result. The process stops if the any-k algorithm exhausts the results
or we have already produced k valid results.

The correctness lies in the feature of SPARQL queries. The score of a result
only comes from nodes, so ignoring some edges will not change the relative order
of the origin top-k answers, but will bring more intermediate results. The query
splitter chooses the edge with the worst selectivity to cut off to avoid overflooding
intermediate results. The results assembler assures each output result is the
correct match of the cyclic query.

Fig. 4. The Answering Process of gTop

3 Experiments and Demonstration

We run our experiment on a server with an Intel(R) Xeon(R) CPU E5-2640 v3
2.60GHzCPU and 125GB memory running CentOS Linux. We evaluate all the
algorithms by a real-world knowledge graph YAGO2[3]. YAGO2 is a high-quality
knowledge graph extracted from Wikipedia, which is widely used in many real-
world applications and is widely accepted as a criterion for performance in graph
algorithms.

We test the algorithms with 8 queries and the results are shown in Fig. 4. In
the figure, ’RAM’ refers to the naive algorithm, which ranks and gets the top-k
results after finding all the results by subgraph matching. The experiment shows
that our strategy has a significant improvement over the naive implementation.

The queries have 2 to 10 query triples each and the results are ranked by the
linear combination of up to 4 numeric literal variables.

gTop: An efficient SPARQL Query Engine 5

Fig. 5. The Answering Process of gTop

In the demonstration, we present a website for users to use gTop. We prebuild
the YAGO2 databases and gTop processes query over YAGO2. Users can type
in SPARQL top-k queries and get answers by pressing the ’Query Now’ button
on the website. The website is connected to an HTTP endpoint of gTop and the
website will display the results returned by gTop, as shown in Fig. 5.

Acknowledgements This work was partially supported by National Key R&D
Program of China (2020AAA0105200).

References

1. Cheng, J., Zeng, X., Yu, J.X.: Top-k graph pattern matching over large graphs. In:
Jensen, C.S., Jermaine, C.M., Zhou, X. (eds.) 29th IEEE International Conference
on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013. pp. 1033–
1044. IEEE Computer Society (2013). https://doi.org/10.1109/ICDE.2013.6544895,
https://doi.org/10.1109/ICDE.2013.6544895

2. Gou, G., Chirkova, R.: Efficient algorithms for exact ranked twig-pattern matching
over graphs. In: Proceedings of the 2008 ACM SIGMOD international conference
on Management of data. pp. 581–594 (2008)

3. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A
spatially and temporally enhanced knowledge base from wikipedia. Ar-
tif. Intell. 194, 28–61 (2013). https://doi.org/10.1016/j.artint.2012.06.001,
https://doi.org/10.1016/j.artint.2012.06.001

4. Zeng, X., Cheng, J., Yu, J.X., Feng, S.: Top-k graph pattern matching: A twig
query approach. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) Web-Age
Information Management - 13th International Conference, WAIM 2012, Harbin,
China, August 18-20, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7418, pp. 284–295. Springer (2012). https://doi.org/10.1007/978-3-642-32281-
5_28, https://doi.org/10.1007/978-3-642-32281-5_28

6 Y. Zhou et al.

5. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gstore: An-
swering SPARQL queries via subgraph matching. Proc. VLDB En-
dow. 4(8), 482–493 (2011). https://doi.org/10.14778/2002974.2002976,
http://www.vldb.org/pvldb/vol4/p482-zou.pdf

