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ABSTRACT

Graph pattern mining (GPM) is getting increasingly important in
recent years. Many graph pattern mining frameworks try to use
universal primitives to deal with various graph pattern mining
tasks. However, most of them suffer from unsatisfactory perfor-
mance because of the exponential complexity of GPM. GPU is a
new hardware with great parallelism, and many graph algorithms
have achieved significant performance improvements on GPU.

In this demo, we propose a graph pattern mining framework
on GPU, called GAMMA. GAMMA proposes effective and flexible
interfaces for users to implement their mining tasks conveniently.
GPM has extensive intermediate results in parallel environments.
We make full use of host memory to deal with large-scale graphs
and extensive intermediate results. We also present several opti-
mizations to process large graphs. GAMMA has great scalability
and performance advantages compared with state-of-the-art graph
mining works in experiments.
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1 INTRODUCTION

Graph pattern mining (GPM) is getting increasingly important re-
cently. Given an input graph, graph pattern mining aims to find
subgraphs of interest. It includes many graph algorithms such as
subgraph matching (SM), frequent pattern mining (FPM), motif
counting, k-clique counting (kCL) and triangle counting. Figure
1 gives examples of two graph pattern mining tasks, and we will
present how to implement them in our framework. So far, many
graph pattern mining frameworks aim to provide universal so-
lutions for those GPM algorithms: users can use the primitives
provided by those frameworks to build their mining algorithms
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conveniently. However, most of those frameworks suffer from un-
satisfactory performance because of the exponential search space of
GPM. For example, a state-of-the-art GPM framework, Arabesque
[5], spends 1.65 hours on finding all length-3 frequent patterns in a
graph with only one million edges.
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Figure 1: Two specific graph mining tasks.

One way to improve the performance of GPM is to employ hard-
ware assist. Due to the massive parallelism of GPU, the performance
of graph algorithms can be improved significantly. However, GPM
algorithms usually produce massive intermediate results; on the
other hand, GPU device memory is limited compared with host
memory. For example, Pangolin [2], the only existing graph pattern
mining framework on GPU, cannot perform FPM on a graph with
only 17M edges because of the limit of device memory capacity.

Table 1: Average performance improvement of GAMMA com-
pared with other state-of-the-art graph mining works.

Pangolin[2] Peregrine[4] GraphMiner[1,3] GSI[6]
speedup 65.5% 79.5% 66.9% 56.7%

Targeting the above two problems, i.e., performance and scalabil-
ity, we develop a graph pattern mining framework for large graphs
(GAMMA for short) on an out-of-core GPU system. To the best of
our knowledge, our GAMMA is the first GPM framework on GPU
that uses both device memory and host memory to accommodate
large graphs and massive intermediate results. GAMMA has orders
of magnitude better scalability in graph size than Pangolin, the only
existing GPM framework on GPU. GAMMA can process graphs
with about 500M edges, which uses about 300 GB of host memory
in processing. We also aim at high performance in framework de-
sign, such as data structure design and primitive implementation.
Using FPM and SM as examples, we achieve good performance
improvement compared with state-of-the-art frameworks on GPU
and multi-core CPU, even compared with some GPU-based spe-
cific graph algorithms such as GSI [6] in subgraph matching. The
performance advantages are shown in Table 1.

Generally, GAMMA makes the following technique contribu-
tions:
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(1) Self-adaptive host memory access methods. There are
two kinds of implicit host memory access methods from GPU:
unified memory and zero-copy memory. The former is more suitable
for data with good spatial or temporal locality, and the latter is
friendly to isolated and infrequently accessed data. We put graph
data in host memory, and dynamically determine the access method
for each page depending on the access locality of the pages in the
running process. This helps to enlarge the graph size that our
framework can process and smooth the gap between host memory
and device memory.

(2) Primitive optimizations. We adopt “extension-aggregation-
filtering” as the primitives for users to build various graph pattern
mining algorithms. However, there are some new challenges as the
graph size increases, especially when graphs are beyond the capa-
bility of device memory. Therefore, we propose three optimizations
to our primitives to address those problems. Generally, we propose
a dynamic memory allocation strategy to avoid writing conflict,
pre-merge adjacency lists to avoid redundant computation, and re-
duce the workload of out-of-core sort in the aggregation primitive.
Those optimizations play key roles in performance improvement.

We will demonstrate GAMMA to implement classical GPM algo-
rithms to show the user-friendly interfaces, low-code programming
model and high efficiency of GPM implementations.

2 SYSTEM OVERVIEW
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Figure 2: Architecture of GAMMA

Figure 2 depicts the architecture of GAMMA, including the stor-
age layer and the execution engine. Generally, there are two essen-
tial parts in storage in GPM framework: graph data and intermediate
results, and we refer to the latter as embedding table in our paper.
In the storage layer, we assume that both graph data and the em-
bedding table are resident in both GPU device memory and host
memory. We propose a self-adaptive graph data storage and access
strategy on a heterogeneous computing system involving CPU and
GPU. In the out-of-core GPU execution engine, we use flexible
and effective primitives, i.e., “extension-aggregation-filtering”, to
process the embedding table, and propose our optimized execu-
tion algorithms of the three primitives over the embedding table.
Users can use these primitives to build various GPM algorithms
conveniently.

Generally, we call the subgraphs of interest in GPM as patterns,
and refer to those instances found in the input graph as embeddings.
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Data structures visible to users
1. constraintc;

2. embedding_table ET;

3. graph_data Gg;

4. query_graph Gg;

Interfaces visible to users

1. Vertex_Extension (embedding_table ET, graph_data Ga);
2. Edge_Extension (embedding_table ET, graph_data Ga);
3. Aggregation (embedding_table ET, map_function mf);
4. Filtering (embedding_table ET, constraint c);

Figure 3: Interfaces of GAMMA

Figure 3 shows all the interfaces and primitives visible to users.
Here we introduce them briefly.

e The embedding table ET is the set of intermediate results,
and the data graph G is the input graph represented as
compressed sparse rows (CSR). GAMMA targets large graphs,
therefore both data structures are resident at host memory.
Users can specify the constraints c, such as the frequency
threshold in FPM, and the query graph G4 in SM.

e The extension primitive takes the embedding table as in-
put, and extends the length of embeddings in it by one. Em-
beddings can be edge-induced or vertex-induced; accord-
ingly, there are two extension strategies (edge-extension and
vertex-extension) to support flexible graph mining tasks.

e Aggregation primitive maps each embedding in the embed-
ding table into a pattern, and aggregates those mapped pat-
terns to obtain some statistical information.

e Filtering is a primitive following the “extension” and “ag-
gregation” to prune embeddings that do not satisfy given
constraints.

Those interfaces make it easy for users to build various graph
mining tasks. Here we give an example of implementing subgraph
matching, a vital GPM algorithm, with our framework GAMMA.

Algorithm 1: WOJ Subgraph Matching
Input: query graph G, data graph G4.

Output: subgraph matching results.

Let 6, denote the matching order of vertices in Gg;

[

2 ET « all matched vertices to the first vertex in §,;

w

foreach unmatched vertex v € §, do
‘ Vertex_Extension(ET,Gg) ‘;

'S

o

‘ Filtering(ET,Constraint = Gg) ';

6 end
output_result(ET) ;

N

Given a query graph G, the subgraph matching aims to find all
subgraphs in the data graph G that are isomorphic to G4. There are
usually two methods for subgraph matching: binary join and worst-
case optimal join (WQ]J). The former extends one edge at a time,
and the latter extends one vertex at a time. Here we demonstrate
subgraph matching implementation using vertex-centric extension
in Algorithm 1. The initial embeddings in SM are one-column em-
bedding table, matching the first vertex in Gg.In each iteration, we



A GPU-based Graph Pattern Mining System

process one query vertex. For each embedding in the embedding
table, we consider all possible vertex extensions for a given query
vertex (line 4). Extended embeddings can be safely filtered if vio-
lating the subgraph isomorphism of G4 (line 5). Finally, we output
all embeddings as results. Binary join can be implemented using
GAMMA with a similar process, except that it uses edge extension.

GAMMA frees users from tedious programming details, espe-
cially complicated primitive optimizations, graph partition, host
memory access and large-scale intermediate results maintenance
between device memory and host memory in the traditional specific
out-of-core GPU algorithms. In GAMMA, users only need to focus
on implementing the algorithm logic using the three primitives.
GPU execution optimizations, memory access and data organization
are all handled by GAMMA, which are transparent to users.

3 TECHNIQUES
3.1 Host Memory Access

To support large graph processing on GPU, we must use host mem-
ory since the device memory is limited (i.e., Tesla V100 has only 16
GB of device memory). Basically, there are two kinds of strategies
to access host memory, i.e., explicit memory access and implicit
memory access. The former organizes the required data in host
and transfers them to the device explicitly before launching GPU
kernels, while the latter launches data transfer from GPU at run-
time and accesses the required data on-the-fly. The critical problem
for explicit host memory access is that it is often a task-specific
access method, which is unsuitable for our comprehensive GPM
framework. Thus, GAMMA employs the implicit memory access
approach.

There are two implicit host memory access modes: unified mem-
ory and zero-copy memory. The former transfers data at the size
of a page (4 KB), and caches pages in device for later access; while
the latter does not have a cache in device, and transfers data at the
unit of a cache line (128 Byte). Unified memory is suitable for data
with good spatial or temporal locality, and zero-copy memory is
friendly to infrequently accessed or isolated data.

Continuous embeddings in the embedding table often have the
same parent embeddings. Thus, we use tree structures to compress
the embedding table. Access to a batch of embeddings is continuous
and concentrated, in which case we use unified memory to access
the embedding table.

E J
Zero-copy mem E:>

Page 1

resident in Unified

; Core
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host i device
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Figure 4: Two types of pages.

Access to graph data is more complicated. Some pages of graph
data may be accessed multiple times in an extension, and there are
some pages of which only a few cache lines are accessed. Figure
4 illustrates the two different cases, where accessed data in two
pages are highlighted in blue. Apparently, they should be accessed
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in different manners. We design a self-adaptive access method for
each page as follows. Firstly, we formally define spatial and tem-
poral localities in Definitions 3.1 and 3.2, respectively. The former
defines how much data in a page are accessed in one extension,
and the latter shows how much data in a page are accessed in past
extensions. We combined them together to obtain Access Heat (see
Definition 3.3).

Definition 3.1 (Spatial Locality). The spatial locality of a page p
in the i-th extension is defined by the access quantity of p, i.e.,

SpatialLoc;(p) = Z [L(v)| X times;(1(v)) (1)
I(v)epAl(v)€A;
where A; denotes all accessed adjacency lists in the i-th extension,
I(v) denotes the adjacency list of vertex v, and |I(v)| is its size.
times;(I(v)) denotes how many times [(v) is accessed in the i-th
extension.

Definition 3.2 (Temporal Locality). The temporal locality of a
page p in the i-th extension is defined by the access quantity of p
in the first i-1 extensions, i.e.,

TempLoc;(p) = Z Z

J<i=11(v)epAl(v)€A;

[I(v)| % times;(I(v)) (2)

where Aj, [(v), |I(v)| and times;j(l(v)) have been introduced in
defining spatial locality.

Definition 3.3 (Access Heat). The access heat of a page p is defined
as follows:

AccHeati(p) =
Z,< - X SpatialLoc;(p) +

A
M x TempLoc;(p)
where A; denotes the total accessed data in the j-th extension,
SpatialLoc;(p) and TempLoc;(p) are defined in Equations 1 and 2.

The Access Heat combines spatial locality and temporal locality
by the ratio of total accessed data, and is a good measurement
of how likely a page is accessed in the procedure. Before each
extension, we update the AccHeat of each page. Pages with high
AccHeat will be accessed by unified memory, and other pages will
be accessed by unified memory. In this way, different pages can
be accessed through different access manners to make the most of
different host memory access manners.

3.2 Primitive Optimizations

Processing large graphs brings about some new challenges, which
become performance bottlenecks for GPM on GPU. Here we briefly
introduce those challenges, and propose our solutions accordingly.
Dynamic memory allocation. Each thread extends one embed-
ding, producing an uncertain number of new embeddings. There-
fore, parallel threads do not know the positions they should start
writing. Existing methods solve this with one extra extension or
space pre-allocation, which brings a lot of additional time cost or
space cost. We propose a dynamic memory allocation strategy:
we divide the memory space into many memory blocks, and each
running thread asks for a memory block to write new results; af-
ter a memory block is full, the thread will ask for another one.
This dynamically adjusts the memory dispatched to each thread in
run-time, and does not introduce extra space cost or time cost.
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Grouping embeddings with common prefixes. Embeddings
produced from the same parent share the same prefixes. There-
fore, there is much redundant computation for them. For example,
consider two instances (u1, ug, u3, us) and (u1, ug, u3, us) in 5-clique
problem: when extending the fifth vertex in those two instances,
they both need to intersect the adjacency lists of uy, uz and us.
Based on this observation, we first group embeddings according to
their prefixes before extension, and assign embeddings in the same
group to the same thread to save redundant computation.

Optimized external sort. The mapped patterns in the aggrega-
tion primitive often need to be sorted, and their size may exceed
the capacity of device memory, in which case external sort on GPU
is needed. Considering the external sort in CPU, we also use the
“divide-sort-merge” process to solve this problem. In the merge
stage, we firstly partition the original merging task into many small
tasks to dispatch them to multiple threads. In each subtask, the ele-
ment in each segment searches for matches in all other segments;
we propose to replace half workloads with prefix-scan and vector
addition, which improves the merging performance.

4 DEMONSTRATION
4.1 System Interface

Home | Language | About | Contact us

GAMMA

A Graph Pattern Mining Framework for Large Graph on GPU

graph data =n
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Figure 5: Demonstration of GAMMA.

We demonstrate how to use GAMMA to build various graph
pattern mining algorithms. Figure 5 gives an example of building
frequent pattern mining with GAMMA. Users can upload their own
datasets and specify whether the input graph is labeled.

GAMMA provides several user-visible data structures: graph
data GD, data structure for intermediate results ET and results
set RT. Users can use them and basic primitives to develop their
mining algorithms. Figure 5 shows how to implement a frequent
pattern mining algorithm with the pattern length as three and the
minimum support as 2000 in GAMMA with a few lines of codes:
firstly, we initialize the results set as all edges in the input graph;
in each iteration, we aggregate all embeddings, filter our invalid
embeddings, and extend all frequent patterns. Subgraph matching
can also be implemented as the pseudocode in Algorithm 1. In fact,
it is easy for users to build their own graph mining algorithms
besides common GPM algorithms, such as only mining subgraph
patterns with specific labels or discovering frequent parent patterns
of a given subgraph. Generally, GAMMA frees users from tedious
and complicated coding in the CPU/GPU cooperating computing
platform and allows them to focus on GPM algorithm logic.
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4.2 Performance

Table 2: All datasets in our experiments.

datasets CP CL CcO EA ER CLx8 SLX5
nodes 6M 4M 3M 265K 37K 32M 24M
edges 17M 34M 117M 729K 368K 467M 481M
types citation | social | social | email | email | synthetic | synthetic

We compare GAMMA with the state-of-the-art GPM frameworks,
i.e., Peregrine [4] and Pangolin [2], and some specific GPM imple-
mentation, i.e., GraphMiner [1, 3] and GSI [6], to show the advan-
tages of GAMMA in performance and graph scalability. We use
both real-world and synthetic datasets, as shown in Table 2.

4.2.1 Subgraph matching. GSI is a subgraph matching implemen-
tation on GPU, and Peregrine is a state-of-the-art multi-core GPM
framework on CPU. We compare the performance with them on
subgraph matching, and the results are shown in Table 3. We do not
compare with Pangolin and GraphMiner, since they do not have
SM implementations. GAMMA performs much better than GSI and
Peregrine on all large graph datasets except for two small datasets
(EA and ER). For small datasets, the preparation of host memory
usage in GAMMA accounts for a large portion of the total running
time. GAMMA achieves 56.7% performance improvement over GSI;
compared with Peregrine, GAMMA achieves 76.1% performance
improvement.

Table 3: Performance of subgraph matching (sec).

CP CL CO EA ER CLx8 | SLX5
GSI 1.12 | 2.01 | 2.84 | 0.35 | 0.21 8.3 7.2

Peregrine | 1.46 | 447 | 11.3 | 0.24 0.1 11.7 12.4

GAMMA | 0.76 | 0.86 | 1.39 | 0.39 | 0.30 1.84 2.5

4.2.2  Frequent pattern mining. Pangolin is the only existing GPM
framework on GPU, but it only uses device memory for graph data
and intermediate results. GraphMiner is a graph mining algorithm
library on CPU, which combines several state-of-the-art graph
mining frameworks. We compare the performance with those two
works as well as Peregrine on FPM, as shown in Table 4. Pangolin
only works on the two smallest datasets (EA and ER) and fails in all
other large graphs, as denoted in “-” in Table 4. GAMMA has 65.5%
performance improvement over it. GAMMA performs significantly
better than GraphMiner and Peregrine on large and medium-size
datasets, achieving an average of 82.9% and 66.9% performance
improvement over Peregrine and GraphMiner, respectively.

Table 4: Performance of frequent pattern mining (sec).

CP CL | CO | EA | ER | CLx8 | SCx5
Pangolin - - - 121 | 7.2 - -

GraphMiner | 30.0 | 168 | 93.6 3.3 1.8 - -
Peregrine 104 154 | 62.5 29 | 23 - -
GAMMA 23.1 19.1 | 10.3 4.6 2.2 31.4 30.5
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