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ABSTRACT
Streaming graph analysis is gaining importance in various fields due 
to the natural dynamicity in many real graph applications. However, 
approximately counting triangles in real-world streaming graphs
with edge duplication and expiration remains an unsolved problem. 
In this paper, we propose SWTC algorithm to address approximate

sliding-window triangle counting problem in streaming graphs 
with edge duplication. In SWTC, we propose a fixed-length slicing
strategy that addresses both unbiased sampling and cardinality
estimation issues with a bounded memory usage. We theoretically 
prove the superiority of our method in the sample graph size and 
estimation accuracy under given memory upper bound. Extensive
experiments over large real streaming graphs confirm that our 
approach can obtain larger sample graphs and more accurate es-
timation value on counting triangle numbers compared with the 
baseline method.
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1 INTRODUCTION
Graphs are an omnipresent form representing large-scale entities
and their relations in various fields, like biochemistry, social net-
works, knowledge graphs and so on. Various kinds of data analysis
can be implemented upon a graph, and among them triangle count-
ing is one of the most fundamental queries. Many applications are 
based on triangle counting, like community detection [1], topic
mining [2], spam detection [3] and so on [4–7].

In the era of big data, new challenges arise in graph analysis. 
Graphs not only grow in scale, but also become more dynamic.

In some applications, data are organized as streaming graphs. A
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streaming graph is an unbounded sequence of items that arrive at

a high speed, and each item indicates an edge between two nodes.

Together these items form a large dynamic graph. The large scale

and high dynamicity make it both memory and time consuming

to store and analyze streaming graphs accurately. It is a natural

choice to resort to efficiently compute approximations. A popular

method is to conduct graph analysis tasks over a small-size sample

graph. In this work, we focus on approximately counting triangles

over large streaming graphs using sampling techniques.

Although several algorithms have been proposed in the literature,

most of them consider the problem in a very ideal situation. Existing

work often assumes that there are no duplicate edges [8, 9], or

no edges will expire. Recent work like PartitionCT [10] considers

duplicate edges, but still fails to support edge expiration. In real-

world applications, the situation is more complex. Streaming graphs

usually have duplicate edges, and edge expiration is included due

to the need of timeliness. Here we give a motivation example. In

social networks, user communications form a streaming graph. Raw

communication logs have duplicate edges, as each pair of users may

communicate multiple times. Spam and topics in social networks

can be detected with triangle counting [3, 11]. In order to detect new

topics or spam in real time, we need to continuously monitor the

triangle count within a recent period, such as the last 24 hours. Elder

edges are considered of little value, as the topics or spam formed by

them are out-of-date. These most recent edges are always changing,

which are defined as a sliding window [12]. The sliding window

model is widely used in streaming graph algorithms and systems

[13–15]. Therefore, a sliding window-based continuous triangle

counting algorithm with edge duplication is desired. That is the

focus of our work.

Generally speaking, there are two different semantics dealing

with duplicate edges, binary counting and weighted counting (see

Definitions 2.4). Binary counting [10, 16] only considers the exis-

tence of edges and filters out duplication, while weighted counting

[16–18] takes duplicate edges into account. Our proposed method

applies to both weighted counting and binary counting. For the

simplicity of the presentation, we only study binary counting when

presenting our algorithm and discuss how to extend our method to

support weighted counting with minor extensions in Section 4.6.

We are also strict with time and memory consumption. In prac-

tice, we need to continuously monitor the triangle count and issue

an alert when it reaches a certain threshold. Therefore, a low-latency

continuous counting is desired. Besides, memory consumed by such

monitor algorithm needs to be preserved. If the memory usage of

an algorithm rises with the increasing stream throughput, it may

exceed the preserved memory and introduce errors at peak times.

The risk of such memory constraint violation is high in real-world

https://doi.org/10.1145/1122445.1122456
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streaming graphs, as the throughput at peak times may be multiple

times higher than ordinary days and hard to predict. Therefore, we

need an algorithm with bounded memory usage in applications.

As it has been proven impossible to maintain a fixed-size sample

in sliding windows with bounded memory usage [19], we resort

to algorithm with bounded-size sample. To the best of our knowl-

edge, no existing work considers such problem. There are several

following challenges:

(1) Old edges will expire in the sliding window model, which

changes both the original and the sample graph, and makes

the sample biased.

(2) An edge may appear multiple times, we need to filter out

duplicate edges in binary counting.

(3) When scaling up the triangle count in the bounded-size

sample graph to the original graph, it is hard to estimate the

number of edges in the sliding window. Because we can not

notice expiration of unsampled edges.

1.1 Our Solution
In order to approximately count triangles in sliding window-based

streaming graphs with edge duplication, there are two major steps:

First, we maintain a sample graph with bounded memory and es-

timate the number of edges in the sliding window continuously.

Then, we count the triangles in the sample graph and scale up the

count according to the estimated edge number.

Maintaining sample with bounded memory in sliding windows

is a challenging task. Sampling techniques used in prior triangle

counting algorithms fail to meet the demand, even if some of them

are proposed for fully dynamic streaming graphs
1
. The theoretical

bound [19] about the space complexity rules out the chance to

maintain a fixed-size sample in the sliding windows with bounded

memory. We have to compromise to a bounded-size sample and

struggle to maximize the expected sample size. When duplication is

included, problem becomes more complicated, as we have to filter

out the duplicated edges under binary counting semantics.

In order to address this issue, we begin with a baseline that com-

bines the structure of PartitionCT [10] with BPS algorithm [19],

and uses hash-based sample to deal with duplication. However, ex-

pected sample graph size in this baseline is rather small compared

to its memory usage. Therefore, we further propose an optimized

uniform sampling technique, fixed-length slicing strategy. It splits a
streaming graph into multiple fixed-length slices, and performs pri-

ority sampling based on these slices. A carefully designed sampling

algorithm produces a larger sample graph under the same memory

usage compared with the baseline, which is theoretically proven in

Section 4.2. Also, mathematical analysis in Section 4.5 and extensive

experiments in Section 5 confirm that our larger sample graphs can

decrease the mean absolute percentage error (MAPE) of triangle

count estimation by 62% ( Figure 6(d)) compared with the baseline.

Besides maintaining the unbiased bounded-size sample, we need

to continuously monitor the number of edges in the sliding win-

dow
2
. It is a necessary parameter when scaling up the triangle

count in the sample to get an approximation in the sliding window.

Although there are classical streaming data cardinality estimation

1
Details will be discussed in Section 3

2
depending on the semantics of binary counting or weighted counting, we need to

either count distinct number of edges, or include the duplicate edges in counting

Table 1: Comparison with Existing Work in Approximate
Triangle Counting over Streaming/Dynamic Graphs
Algorithm Dynamic Graph

model

Allowing Edge

Duplication

Binary or

Weighted

A.Pavan

et.al.[8]
Insertion only ✗ ✗

𝑊𝑅𝑆[22] Fully dynamic ✓ Weighted

PartitionCT[10] Insertion only ✓ Binary

SWTC-Our

Method

Sliding window ✓ Both

algorithms like [20, 21], they cannot support edge expiration in slid-

ing windows. Fortunately, the fixed-length slicing strategy proposed

in Section 4.1 can address both unbiased sampling and cardinality

estimation together. Based on it, we propose a continuous cardinal-

ity estimation algorithm in Section 4.4.

Although we address both unbiased sampling and cardinality

estimation using a uniform strategy—the fixed-length slicing, when
the sliding window meets each “splitting point” (called landmark)
of the slices, there is a dramatic size increment in the sample graph,

resulting in a computation peak time. To solve this problem, we

further propose an optimized technique named “vision counting”,

which spreads the computation cost at these peaks to the entire

procedure of the window sliding, and evades the congestion.

Table 1 positions our method with regard to state-of-the-art

approximate triangle counting work over dynamic graphs, and

more discussions are given in Section 6. Generally, our method is

the only work that addresses both edge duplication and expiration.

More importantly, ourmethod can support both binary counting and
weighted counting semantics. In summary, we made the following

contributions.

(1) We propose the problem of approximately counting triangles

in streaming graphs with sliding windows and duplicate

edges.

(2) In order to solve the above problem, we propose a fixed-

length slicing strategy that addresses both unbiased sampling

and cardinality estimation. It can be applied to both binary

counting and weighted counting. We theoretically prove

the superiority of our method in the sample graph size and

estimation accuracy under given memory upper bound.

(3) To avoid high latency at computation peak times, we pro-

pose a technique named vision counting to spread the heavy

computation workloads at peak times to the entire procedure

of the window sliding.

(4) Extensive experiments over large streaming graphs confirm

that our method outperforms the baseline solution in terms

of sample size and estimation accuracy. We released all codes

at Github [23].

2 PROBLEM DEFINITION
In this section, we first formally define our problem.

Definition 2.1. Streaming Graph: A streaming graph is an
unbounded time evolving sequence of items 𝑆 = {𝑒1, 𝑒2, 𝑒3 ......𝑒𝑛},
where each item 𝑒𝑖 = (⟨𝑣𝑖1 , 𝑣𝑖2 ⟩, 𝑡 (𝑒𝑖 )) indicates an edge between
nodes 𝑣𝑖1 and 𝑣𝑖2 arriving at time 𝑡 (𝑒𝑖 ). This sequence continuously
arrives from data sources like routers or monitors with high speed. An
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edge ⟨𝑣𝑖1 , 𝑣𝑖2 ⟩ may appear multiple times with different timestamps.
These multiple occurences are called duplicate edges.

A streaming graph can be either directed or undirected. In the

problem of triangle counting, as most prior work defines triangles

without considering edge directions, we also ignore edge directions.

Our algorithm also applies to directed graphs, and we will discuss

it in Section 4.6. Note that in the streaming graph model, due to

the high speed and large volume of the stream, we assume it is

not physically stored and has to be processed in one-scan manner

in real time. In other words, each edge in the stream can only be

processed once upon its arrival. Besides, it should be noted that the

throughput of the streaming graph keeps varying. There may be

multiple (or none) edges arriving at each time point.

In real world applications, we are only interested in the most re-

cent edges, which are modeled as the sliding window. There are two
kinds of sliding windows: count-based sliding windows (also called

sequence-based sliding windows) and time-based sliding windows.
In this paper, we focus on time-based sliding windows. Count-based

one can be seen as a simplified time-based sliding window where

there is exactly one edge coming at each time point. Most previous

algorithms and applications also use time-based sliding windows

[13–15]. For simplicity, we use sliding window to denote time-based

sliding window in the follows.

Definition 2.2. Sliding window: A sliding window with win-
dow length 𝑁 in a streaming graph 𝑆 is a set of edges 𝑒𝑖 with times-
tamps within (𝑇 − 𝑁,𝑇 ], where 𝑇 is the current time, namely clock
time of the system. We denote this window with𝑊𝑇

𝑇−𝑁 .

The window size 𝑁 depends on applications, and the number

of edges in the sliding window varies with the throughput of the

stream. More generally, we use𝑊
𝑡2

𝑡1

to represent a set of edges with

timestamps between 𝑡1 and 𝑡2. Based on the definition of the sliding

window, we introduce the snapshot graph.

Definition 2.3. Snapshot graph: A snapshot graph at time 𝑇 ,
denoted as 𝐺𝑇 , is a graph induced by all the edges within the sliding
window𝑊𝑇

𝑇−𝑁 .

𝒆𝒆𝟏𝟏

Sliding Window

t=1 t=4t=3 t=5 t=6 t=7 t=10 t=11 t=12 t=13 t=14 t=15

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒆𝒆𝟏𝟏 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒆𝒆𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒆𝒆𝑺𝑺

Old New

𝒆𝒆𝑺𝑺 𝒆𝒆𝑺𝑺 𝒆𝒆𝟒𝟒 𝒆𝒆𝟓𝟓 𝒆𝒆𝟔𝟔 𝒆𝒆𝟕𝟕 𝒆𝒆𝟖𝟖 𝒆𝒆𝟗𝟗 𝒆𝒆𝟏𝟏𝟏𝟏 𝒆𝒆𝟏𝟏𝟏𝟏 𝒆𝒆𝟏𝟏𝑺𝑺

t=15

𝒆𝒆𝟏𝟏3

Figure 1: Streaming Graph and Sliding Window at 𝑇 = 15

Example 1. A streaming graph 𝑆 with the sliding window is given
in Figure 1. The window length is 𝑁 = 6 and current time is 𝑇 = 15.
The timestamp of each edge is shown above it. Current sliding window
is𝑊 15

9
, and there are 7 edges in it. The separation of slices is used in

SWTC algorithm, and will be explained in Section 4.

In this paper, we focus on continuous triangle counting in the

sliding window model, which maintains the number of triangles

in the current snapshot graph. There are duplicate edges in the

snapshot graph, as an edge may have multiple copies with different

timestamps. There are two kinds of semantics to deal with these

duplicate edges [16], i.e., binary counting and weighted counting:

Table 2: Notation Table
Notation Meaning

𝑆 = {𝑒1, 𝑒2, ....𝑒𝑛 } Streaming graph 𝑆

𝑡 (𝑒) Timestamp of an edge 𝑒

𝑊
𝑡2

𝑡1

Set of edges 𝑒 where 𝑡1 < 𝑡 (𝑒) ⩽ 𝑡2

|𝑊 𝑡2

𝑡1

| Number of distinct edges in𝑊
𝑡2

𝑡1

𝑁 Length of the sliding window

𝑊𝑇
𝑇−𝑁 Sliding window at time𝑇 with size 𝑁

𝐺𝑇
Snapshot graph in the sliding window

𝐺𝑠 Sample graph generated from𝐺𝑇

𝜖 Sampled edge in BPS algorithm

𝜖𝑡𝑒𝑠𝑡 Test edge in BPS algorithm

𝐻 ( ·) Function that maps edges to substreams

𝐺 ( ·) Function that produces edge priorities

𝑙𝑛𝑒𝑤 The latest landmark before current time𝑇

𝑙𝑜𝑙𝑑 The second latest landmark before current

time𝑇

𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖 ] The edge with the largest priority in the 𝑖𝑡ℎ

substream in𝑊
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑖 ] The edge with the largest priority in the 𝑖𝑡ℎ

substream in𝑊𝑇
𝑙𝑛𝑒𝑤

Definition 2.4. Binary & Weighted counting: A triangle in
a graph 𝐺 is defined as a tuple of three edges (⟨𝑢, 𝑣⟩, ⟨𝑢,𝑤⟩, ⟨𝑣,𝑤⟩),
where any two edges share one common node. In binary counting, we
return the total number of distinct triangles in graph𝐺 . In weighted
counting, the weight of triangle (⟨𝑢, 𝑣⟩, ⟨𝑢,𝑤⟩, ⟨𝑣,𝑤⟩) is 𝑓 (⟨𝑢, 𝑣⟩) ×
𝑓 (⟨𝑢,𝑤⟩) × 𝑓 (⟨𝑣,𝑤⟩), where 𝑓 (·) denotes number of occurrences of
an edge, namely the frequency. The weighted counting returns the
sum of all triangle weights.

In binary counting, we need to filter out duplication and only

concentrate on distinct edges. On the other hand, in weighted

counting, as a weighted triangle can be seen as multiple triangles

induced by duplicate edges, duplicate edges also contribute to the

triangle count.We can include them during sampling and estimating

edge counts. The denotations used in this paper is presented in

Table 2.

3 BASELINE
As mentioned above, in order to estimate the number of triangles,

the first challenge is to retain a uniform (i.e., unbiased) sample in

the sliding window with bounded memory. It should be noted that

algorithms for fully dynamic models such as [17, 18] cannot be

used in sliding windows, since they need to know whenever an

edge is deleted, no matter the deleted edge is sampled or not. In the

sliding window model, edges expire automatically as the window

slides. Unless we store all edges together with their timestamps in

a sliding window, we cannot know when unsampled edges expire.

Therefore, algorithms like [17, 18] can only work by storing the

entire sliding window, which consumes a large amount of memory.

Therefore, we need to design a new sampling scheme to maintain

uniform sample in the sliding-window model.

Before presenting our method, we first introduce some back-

ground knowledge about the priority sampling [24] and BPS (bounded

priority sampling) algorithm [19] (in Section 3.1), which benefits
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the understanding our baseline. Since BPS does not consider dupli-

cation, we will discuss how to revise it to deal with duplication and

combine it with the structure of PartitionCT [10] to improve time

and memory efficiency in our baseline solution (in Section 3.2).

3.1 Background: Priority Sampling and BPS
BPS algorithm [19] is designed for sampling in sliding windows

without duplication. Theoretically, authors in [19] prove that it

is impossible to maintain a fixed-size uniform sample in sliding

windows with bounded memory.
3
As a compromise, BPS maintains

a bounded-size sample, which lays the foundation of our solution.

For the simplicity of the presentation, we only introduce how to

maintain a sample set with bounded size 1.

Generally speaking, BPS algorithm is based on priority sampling

[24]. Whenever a new edge 𝑒 comes in the stream, BPS generates

a random priority 𝐺 (𝑒). BPS algorithm selects the edge with the

largest priority as the sample. Because the priority is randomly

generated, each edge has equal probability to get the largest priority,

thus the sampling is uniform.

If there are only insertions in the stream (without edge expiration

in the sliding window), we can maintain the sample with the largest

priority by comparing the sampled one, denoted as 𝜖 , with the new

coming edge. When the new edge has a larger priority, we replace

𝜖 with it. For example, in Figure 2, assume that the window length

is 6. The sampled edge from time 1 to 6 is edge 𝑒1 that arrives at

𝑡 = 1. Note that all unsampled edges are not stored.

However, when a sample edge expires, it is more complicated

to select the successor sample. Some edges after the sampled edge

𝜖 may be shaded by 𝜖 , since they have smaller priorities. They

are discarded after compared with 𝜖 and we cannot retrieve them.

These discarded edges are called blind area. After the expiration
of 𝜖 , the edges in the blind area are still alive but we do not store

them. In this case, we cannot determine the edge with the largest

priority, because we do not know the priorities of edges in the blind

area. For example, in Figure 2, 𝑒1 expires at time 𝑡 = 7 and the four

edges arriving from time 3 to 6 form a blind area. When a new edge

𝑒6 comes at time 𝑡 = 7, we cannot select 𝑒6 as the sample edge,

as we are not sure about the priorities of edges in the blind area.

Otherwise, setting 𝑒6 as the sample will violate the principle of

priority sampling and introduce bias.

To address the above problem, BPS algorithm proposes the fol-

lowing solution. When a sample edge expires, we store it using

another variable, a test edge 𝜖𝑡𝑒𝑠𝑡 , which serves as an upper bound

of edge priorities in the blind area. On the other hand, 𝜖 is set to the

next coming edge, and then maintained by keep comparing new

edges with it. 𝜖 is a valid sample only when 𝐺 (𝜖) ⩾ 𝐺 (𝜖𝑡𝑒𝑠𝑡 ). In
this case, since priorities of edges in the blind area are smaller than

𝐺 (𝜖𝑡𝑒𝑠𝑡 ), they are also smaller than 𝐺 (𝜖). Otherwise 𝜖 is invalid.
For example, at time 7 in Figure 2, we set 𝜖 = 𝑒6, but it is invalid.

𝜖𝑡𝑒𝑠𝑡 will double expirewhen its timestamp is smaller than𝑇 −2𝑁 ,

where𝑇 is the current time and 𝑁 is the window length. The length

of blind area following 𝜖𝑡𝑒𝑠𝑡 is at most 𝑁 . It means all edges in

the blind area must expire when 𝜖𝑡𝑒𝑠𝑡 double expires. By then we

can set the current sampled edge as a valid one, since all edges in

the sliding window have participated in the competition with the

3
In page 3, Section 3.1 of [19].

current sample edge. The winner has the largest priority, thus it

is a valid sample. In the example in Figure 2, 𝑒1 double expires at

𝑡 = 12. At this time, edges arriving from time 2 to 6 all expires. The

current sample is 𝑒6. Since other edges in the sliding window have

all been compared with it, we can set 𝑒6 as a valid sample.

According to the above discussion, BPS algorithm cannot get a

valid sample in some periods. We call such period a vacuum period.

In Figure 2, the vacuum period is from 𝑡 = 7 to 𝑡 = 12.

3.2 Structure of the Baseline Method
The original BPS algorithm uses a random function𝐺 (·) to generate
priority. Considering two different semantics in streaming graphs

with duplication, we have different function settings for 𝐺 (·). In
binary counting, we use a hash function to define the priority 𝐺 (·)
instead of random one. Because with random function, duplicated

edges will get multiple priorities and a higher sampling probability,

which leads to bias in binary counting. The hash function generates

the same priority for a duplicated edge, no matter how many times

the edge arrives. Therefore, it can derive a uniform sample in binary

counting. In weighted counting, duplicate copies of an edge are seen

as independent, and each copy get a chance to be sampled. In this

case, we still use random function to define the priority 𝐺 (·).
When extended to multiple samples, the original BPS algorithm

uses a complicated data structure named treap to maintain the

sampled edges and test edges, which is both memory and time

consuming. We use the technique in PartitionCT to simplify the

data structure. Assume that the sample size is upper bounded by 𝑘 ,

where 𝑘 is an user-specified parameter. We use a function 𝐻 (·) to
split a streaming graph into 𝑘 substreams, like PartitionCT. This

function is a hash function in binary counting, and a random func-

tion in weighted counting. In each substream, we use BPS algorithm

to obtain at most one valid sampled edge. The framework of the

baseline method is shown in Figure 3. Notice that only valid sam-

pled edges are included in sample graph 𝐺𝑠 and contribute to the

triangle counter.

Let 𝑘 be a user-specified parameter in the baseline method. In the

best case, each substream has a valid sampled edge and the number

of edges in sample graph 𝐺𝑠 is 𝑘 . Therefore, the memory upper

bound in the baseline is able to hold a 𝑘-edges sample graph 𝐺𝑠 .

However, as each substream has independent probability to be in the

vacuum period of BPS sampling (i.e., cannot provide a valid sample),

the sample graph is smaller than 𝑘 . We theoretically prove that the

probability that the baseline approach can get a valid sampled edge

in one substream is in range [ |𝑊
𝑇
𝑇−𝑁 |

|𝑊𝑇
𝑇−2𝑁

| , 1 −
|𝑊𝑇−𝑁

𝑇−2𝑁
|

|𝑊𝑇
𝑇−3𝑁

| ] (see Theorem

4.2 in Section 4.2)
4
, where | · | denotes the number of edges in the

window
5
. Assume that the streaming graph’s throughput is steady,

the valid sample probability is [0.5, 0.66]. It means that the sample

graph size is between 0.5𝑘 and 0.66𝑘 edges. In expectation, only

half of the memory will be efficiently used in the baseline. We can

improve the sample strategy to get a larger sample graph. In next

section, we will propose a new sampling strategy to get a larger

sample graph with the same memory upper bound, and obtain a

higher accuracy in triangle count estimation.

4
[19] only gives the lower bound, we further analyze the upper bound

5
distinct count for binary counting, and count with duplication for weighted counting,

see section 4.2 and section 4.6
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t=10 t=11 t=12

t=1 t=4t=3
𝒆𝟏

𝒆𝟔

Time

Valid Sample Invalid Sample Test EdgeExpired Edge Active Edge
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4 OUR METHOD
In this section, we propose our algorithm (called SWTC) to address

approximate sliding-window triangle counting problem in stream-

ing graphs with edge duplication. First, we propose a fixed-length

slicing based sampling strategy together with its optimization ver-

sion in Section 4.1 and 4.3, respectively. In Section 4.2, we theoret-

ically prove that SWTC gets a larger-size sample graph than the

baseline method under the same memory consumption. In Section

4.4, we discuss how to continuously monitor |𝑊𝑇
𝑇−𝑁 |, namely the

number of distinct edges in the sliding window, and estimate the

binary triangle count in the sliding window. In Section 4.5, we

theoretically analyze the accuracy of SWTC. For the simplicity of

presentation, we only focus on binary counting until Section 4.6, in

which we extend SWTC to weighted counting and directed graphs.

4.1 SWTC Sample Strategy
Sample Strategy: We propose a fixed-length slicing method in

SWTC. Specifically, we split the timeline of the streaming graph

into multiple slices with fixed-length of 𝑁 time units, and each

splitting point is called a “landmark”. It is easy to know that, the

current sliding window𝑊𝑇
𝑇−𝑁 overlaps with at most two slices,

which are denoted as𝑊
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

and𝑊𝑇
𝑙𝑛𝑒𝑤

, where 𝑙𝑛𝑒𝑤 and 𝑙𝑜𝑙𝑑 are

two landmarks (splitting point) and 𝑇 is the current time point. An

example is shown in Figure 1. The sliding window and each slice

all have the same length of 6 time units. Current time is 15 and

current sliding window is𝑊 15

9
, overlapping with slice-2𝑊 12

6
and

slice-3𝑊 18

12
. Slice-3 is an ongoing slice and only has the length of 3

time units at current time 15 (though there are four edges in it as

two edges arrive at the same time at 𝑡 = 15). The sliding window

may also overlap with only a single slice. For example, at time 12

it only overlaps with slice-2. Similar to the baseline method, we

use a hash function 𝐺 (·) to generate priority for each edge, and

use another hash function 𝐻 (·) to split the streaming graph into 𝑘

substreams. Then in each substream, we can easily retain the edge

with the largest priority in each slice, as the splitting points are

fixed. We use 𝜖
𝑡2

𝑡1

[𝑖] to represent the edge with the largest priority

in a slice from 𝑡1 to 𝑡2 in the 𝑖𝑡ℎ substream. Then we just need to

set 𝜖
𝑡2

𝑡1

[𝑖] empty at time 𝑡1, and replace it with an incoming edge 𝑒

if 𝐺 (𝑒) ⩾ 𝐺 (𝜖𝑡2

𝑡1

[𝑖]) or 𝜖𝑡2

𝑡1

[𝑖] is empty until 𝑡2.

Because the sliding window overlaps with at most two slices, we

need to record two edges 𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖] and 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖] in the 𝑖𝑡ℎ substream

(1 ⩽ 𝑖 ⩽ 𝑘). Only one of them may participate in the sample graph.

There are 3 cases, as shown in Figure 4.
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Figure 4: Different Cases in SWTC

Case 1: In case 1, both 𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖] and 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖] are in the sliding

window. The larger one of them is the edge with the largest priority

in the sliding window in this substream, and it is the valid sampled

edge in this substream.

Case 2: With time passing by, case 1 transfers to case 2. In

this case, 𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖] has already expired, but the sliding window still

overlaps with𝑊
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

. If𝐺 (𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖]) > 𝐺 (𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖]), we cannot select

a valid sampled edge from this substream. Because unexpired edges

in𝑊
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

are unknown to us. There may exist edges 𝑒 ′ in𝑊 𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

,

where 𝐺 (𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖]) > 𝐺 (𝑒 ′) > 𝐺 (𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖]) and 𝑡 (𝑒 ′) > 𝑇 − 𝑁 .

Therefore we cannot determine if 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑖] has the largest priority

in the sliding window. There is no sampled edge in this substream in

this case. On the other hand, if𝐺 (𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑖]) ⩾ 𝐺 (𝜖𝑙𝑛𝑒𝑤

𝑙𝑜𝑙𝑑
[𝑖]), 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖]

is a valid sample. Because it is the edge with the largest priority in

𝑊𝑇
𝑙𝑛𝑒𝑤

, and also has larger priority than all edges in𝑊
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

, since it

has priority no less than 𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖]. We can determine that it has the

largest priority in the sliding window.

Case 3: After case 2, the sliding window further slides and

arrives at a new landmark. The sliding window no longer overlaps
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with𝑊
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

. In other words,𝑊𝑇
𝑇−𝑁 =𝑊𝑇

𝑙𝑛𝑒𝑤
. In this case, 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖]

is the valid sampled edge in the sliding window.

The above three cases are repeated recursively.

Algorithm 1: Processing new edge in the SWTC

Input: edge e = (s, d)

Output: updated sample

1 𝑝 ← 𝐻 (𝑒)
2 if 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑝 ] = 𝑒 then

3 Update the timestamp of 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝 ]

4 else
5 if 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑝 ] = 𝑁𝑈𝐿𝐿 𝑜𝑟 𝐺 (𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑝 ]) ⩽ 𝐺 (𝑒) then

6 𝐺𝑠 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝 ]) /*call Algorithm 3*/

7 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝 ] ← 𝑒

8 if 𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝 ] = 𝑁𝑈𝐿𝐿 𝑜𝑟 𝐺 (𝜖𝑙𝑛𝑒𝑤

𝑙𝑜𝑙𝑑
[𝑝 ]) ⩽ 𝐺 (𝑒) then

9 𝐺𝑠 .𝑎𝑑𝑑 (𝑒) /*call Algorithm 2*/

10 𝐺𝑠 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝 ]) /*call Algorithm 3*/

Algorithm 2: 𝐺𝑠 .𝑎𝑑𝑑 (·)
Input: edge e

Output: updated sample

1 𝐺𝑠 .𝐼𝑛𝑠𝑒𝑟𝑡𝐸𝑑𝑔𝑒 (𝑒)
2 𝐺𝑠 .𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 (𝑒)

Algorithm 3: 𝐺𝑠 .𝑟𝑒𝑚𝑜𝑣𝑒 (·)
Input: edge e

Output: updated sample

1 if 𝑒! = 𝑁𝑈𝐿𝐿 && 𝑒 𝑖𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 then
2 𝐺𝑠 .𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 (𝑒)
3 𝐺𝑠 .𝐷𝑒𝑙𝑒𝑡𝑒𝐸𝑑𝑔𝑒 (𝑒)

Edge processing algorithm: Algorithm 1 shows how to process

a new edge 𝑒 . Firstly, edge 𝑒 is hashed to the 𝐻 (𝑒)-th substream,

where 𝐻 (·) is a hash function. Let 𝑝 = 𝐻 (𝑒) (Line 1 in Algorithm 1).

If edge 𝑒 is same with the recorded edge 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝], we just update

𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝]’s timestamp to be the current time point 𝑇 (Lines 2-3).

Otherwise we compare it with 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝]. There are 2 cases:

(1) If 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝] is empty or𝐺 (𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑝]) ⩽ 𝐺 (𝑒), we update edge

𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝] to be 𝑒 (Lines 5-7). In this case, if the old 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑝]

is a sampled edge in 𝐺𝑠 , we need to remove 𝜖𝑇
𝑙𝑛𝑒𝑤

from 𝐺𝑠

and decreases the number of triangles containing 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝]

from the triangle counter (Lines 6).

(2) If 𝐺 (𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝]) > 𝐺 (𝑒), we do nothing.

Furthermore, in the first case, we need to further check 𝜖𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝]

after replacing 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝] with 𝑒 . If 𝜖𝑛𝑒𝑤

𝑙𝑜𝑙𝑑
[𝑝] = 𝑁𝑈𝐿𝐿 or𝐺 (𝜖𝑛𝑒𝑤

𝑙𝑜𝑙𝑑
[𝑝]) ⩽

𝐺 (𝑒), we can conclude that edge 𝑒 should be selected as a sampled

edge and inserted into sample graph 𝐺𝑠 . We need to add the num-

ber of triangles containing 𝑒 (Lines 8-9). Besides, if 𝜖𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝] is a

sampled edge in 𝐺𝑠 , we need to delete it and reduce the number of

triangles containing 𝜖𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝] from the counter (Lines 10).

Expiration algorithm: In order to delete the expired sampled

edges, we need to continuously monitor the oldest edge in the

sample graph 𝐺𝑠 . This can be easily achieved with a linked list

maintaining the time sequence of the sampled edges. Once the

oldest edge expires, which means its timestamp is smaller than

𝑇 − 𝑁 , we delete it from 𝐺𝑠 and decrease the triangle counter.

At a landmark, namely case 3 in Figure 4, we scan the 𝑘 sub-

streams. In each substream,we set 𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖] = 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖] and 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖] =

𝑁𝑈𝐿𝐿, as a new slice is about to emerge. Furthermore, If𝐺 (𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑖]) <

𝐺 (𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖]) in the 𝑖𝑡ℎ substream before the scanning, edge 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖]

becomes a sampled edge now. We insert it into𝐺𝑠 and increase the

triangle counter.

4.2 Valid Sample Size Analysis
The accuracy of the sampling-based triangle count estimation de-

pends on the sample graph size |𝐺𝑠 |. Larger |𝐺𝑠 | leads to more

accurate estimation result, which will be analyzed in Section 4.5.

In this subsection, we mathematically analyze |𝐺𝑠 | in our method

SWTC and compare it with the baseline approach (proposed in Sec-

tion 3). We first give a brief analysis about the space consumption

of SWTC and the baseline method. Then we analyze their valid

sample size under the same memory usage.

Space Analysis: SWTC and the baseline method both consume

𝑂 (𝑘) memory, and their memory consumption is the same given

the same substream number 𝑘 . For both SWTC and the baseline,

we need to maintain two edges in each substream. In the baseline

method, we need to store the test edge and the sampled edge. In

SWTC, we store the edge with the largest priority in each slice and

two slices are maintained. Besides, the maximum size of sample

graph is 𝑘 edges for both algorithm. The same memory is needed

to be preserved for the sampled graph in both algorithms. As 𝑘

decides the amount of memory these algorithms consume, it should

be set according to the available memory in applications.

Valid Sample Size Analysis: Based on the analysis above, we

compare the valid sample size of SWTC and the baseline method

given the same substream number 𝑘 . For each substream, we use 𝜌

to represent the probability of selecting a valid sampled edge. Obvi-

ously, the expected sample graph size is 𝜌×𝑘 . We have the following

results about the probability of 𝜌 in both our approach SWTC and

the baseline method in Theorems 4.1 and 4.2, respectively.

Theorem 4.1. In SWTC, 𝜌 =
|𝑊𝑇

𝑇−𝑁 |
|𝑊𝑇

𝑙𝑜𝑙𝑑
| , where 𝑙𝑜𝑙𝑑 is the second

largest landmark which satisfies 𝑙𝑜𝑙𝑑 ⩽ 𝑇 .

Proof. This theorem is intuitive. From Figure 4 we can see that

we get a valid sample in the substream if and only if the edge with

the largest priority in𝑊
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

and𝑊𝑇
𝑙𝑛𝑒𝑤

lies in the sliding window

𝑊𝑇
𝑇−𝑁 . Suppose there are 𝛼 distinct edges in this substream in

period𝑊𝑇
𝑇−𝑁 , and 𝛼 ′ distinct edges in this substream in period

𝑊𝑇
𝑙𝑜𝑙𝑑

=𝑊
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

+𝑊𝑇
𝑙𝑛𝑒𝑤

. Because each edge gets a random priority,

the probability that the edge with the largest priority in𝑊𝑇
𝑙𝑜𝑙𝑑

lies in
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𝑊𝑇
𝑇−𝑁 is equal to the ratio

𝛼
𝛼′ . Moreover, because edges are mapped

to different substreams randomly,
𝛼
𝛼′ is equal to

|𝑊𝑇
𝑇−𝑁 |
|𝑊𝑇

𝑙𝑜𝑙𝑑
| . □

For BPS sampling in the baseline approach (see Section 3), it is

difficult to give an exact expression of the probability 𝜌 , as it is

cumulatively affected by all the edges arriving before𝑊𝑇
𝑇−𝑁 . The

original paper [19] only gives a lower bound of 𝜌 . And we further

give an upper bound in Theorem 4.2.

Theorem 4.2. For the baseline method,
|𝑊𝑇

𝑇−𝑁 |
|𝑊𝑇

𝑇−2𝑁
| ≤ 𝜌 ≤ 1 −

|𝑊𝑇−𝑁
𝑇−2𝑁

|
|𝑊𝑇

𝑇−3𝑁
| .

Proof. Lower bound: If we use BPS algorithm in a substream,

we will get a valid sample if the edge with the largest priority in

𝑊𝑇
𝑇−𝑁 has a larger priority than the test edge 𝜖𝑡𝑒𝑠𝑡 which arrives

before 𝑇 − 𝑁 . In the worst case, 𝜖𝑡𝑒𝑠𝑡 is the edge with the largest

priority in𝑊𝑇−𝑁
𝑇−2𝑁

. Therefore the edge with the largest priority

in period𝑊𝑇
𝑇−2𝑁

needs to be in𝑊𝑇
𝑇−𝑁 . According to the proof of

theorem 4.1, we can see that this probability is

|𝑊𝑇
𝑇−𝑁 |

|𝑊𝑇
𝑇−2𝑁

| . Therefore,

a substream has a valid sampled edge is no less than

|𝑊𝑇
𝑇−𝑁 |

|𝑊𝑇
𝑇−2𝑁

| .

Upper bound: From the former proof, we know that in a substream,

if the edge with the largest priority in𝑊𝑇−𝑁
𝑇−3𝑁

lies in𝑊𝑇−𝑁
𝑇−2𝑁

, this

edge, which we represent with 𝑒 ′, will definitely become a valid

sampled edge until it expires. By the time of𝑇 , it becomes a test edge.

And if it also has larger priority than the edges in𝑊𝑇
𝑇−𝑁 , it prevents

edges in the sliding window𝑊𝑇
𝑇−𝑁 from becoming valid sample,

and there will be no valid sampled edge in this substream. In other

words, 𝑒 ′ is the edge with the largest priority in𝑊𝑇
𝑇−3𝑁

, and it lies

in𝑊𝑇−𝑁
𝑇−2𝑁

. In this case there will definitely be no valid sampled edge

in this substream. According to the former proof, this probability

is

|𝑊𝑇−𝑁
𝑇−2𝑁

|
|𝑊𝑇

𝑇−3𝑁
| . Therefore, 𝜌 is no larger than 1 − |𝑊

𝑇−𝑁
𝑇−2𝑁

|
|𝑊𝑇

𝑇−3𝑁
| . □

According to Theorems 4.1 and 4.2, the value of 𝜌 depends on

the cardinality in different periods, which varies according to both

the length of the period and the throughput of the stream. In order

to make 𝜌 intuitive and comparable, we assume that the throughput

of the streaming graph is steady. Then, we have the following result.

Theorem 4.3. Assume that the throughput of streaming graph
is st steady, in BPS 0.5 ⩽ 𝜌 ⩽ 0.66, in SWTC 𝜌 = 0.75.

Proof. When the throughput of the streaming graph is steady,

the cardinality in a window𝑊
𝑡2

𝑡1

is relevant with its length 𝑡2 − 𝑡1.

For SWTC, 𝜌 =
|𝑊𝑇

𝑇−𝑁 |
|𝑊𝑇

𝑙𝑜𝑙𝑑
| =

|𝑊𝑇
𝑇−𝑁 |

|𝑊 𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

+𝑊𝑇
𝑙𝑛𝑒𝑤

|
. The length of𝑊

𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑

is

always 𝑁 , but the length of𝑊𝑇
𝑙𝑛𝑒𝑤

varies from 0 to 𝑁 with time.

Therefore 𝜌 in 𝑆𝑊𝑇𝐶 varies from 0.5 to 1 with a steady speed, and

the average value, namely the expectation, is 0.75. In BPS, 𝜌 is a

constant value. It is hard to compute the exact value, but we can

get its upper bound and lower bound as shown in Theorem 4.2,

The lower bound is

|𝑊𝑇
𝑇−𝑁 |

|𝑊𝑇
𝑇−2𝑁

| =
𝑁
2𝑁

= 0.5, and the upper bound is

1 − |𝑊
𝑇−𝑁
𝑇−2𝑁

|
|𝑊𝑇

𝑇−3𝑁
| = 1 − 𝑁

3𝑁
= 0.66. □

We also experimentally evaluate |𝐺𝑠 | in both SWTC and the

baseline method in Section 5, both in steady streaming graphs

(Figure 5) and real-world streaming graphs (Figure 6(a) 6(b) and

7(a)). It confirms that the sample graph size in SWTC is larger

than the baseline by 30%, resulting in more accurate triangle count

estimation.

4.3 Optimization-Vision Counting
Although SWTC can generate a larger sample graph and produce

a more accurate triangle count estimation, there is a performance

problem when the sliding window reaches landmarks, i.e., case 3

in Figure 4. Assume that𝐺 (𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖]) > 𝐺 (𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖]) in case 2, there

is no sampled edge in the 𝑖𝑡ℎ substream. But, when the sliding win-

dow reaches a landmark (case 2 is transferred into case 3), a new

sampled edge will be generated. This case may happen in multiple

substreams simultaneously, and it will lead to the emerging of large

quantities of new samples at the same time. Adding these edges

into 𝐺𝑠 and counting the number of increased triangles will bring

peak of computation cost, and may sharply increase the latency

of processing new edges. To address this issue, we propose a new

technique named vision counting. This technique spreads the com-

putation overhead of case 3 over the entire sliding window period,

so that we can avoid the burst of computation cost.

In the vision counting technique, we maintain 2 counters in 𝐺𝑠 .

One is the effective triangle counter 𝑡𝑐 , and the other is a vision 𝑣𝑐
which predicates the triangle counter at the next landmark. When

𝐺 (𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑖]) < 𝐺 (𝜖𝑙𝑛𝑒𝑤

𝑙𝑜𝑙𝑑
[𝑖]) in case 2 of Figure 4, no sampled edge

is selected in this substream. However, we can forecast that at the

next landmark, 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑖] will become a new sampled edge. We insert

it into 𝐺𝑠 , but tag it as an invalid sample. The triangles including
invalid sampled edges are counted in 𝑣𝑐 , but not in 𝑡𝑐 .

The procedure of the optimized-version of SWTC is as follows:

Edge processing algorithm: When a new edge 𝑒 comes and

is mapped to substream 𝑝 , most operations are the same as Al-

gorithm 1, except 2 differences. First, in functions 𝐺𝑠 .𝑎𝑑𝑑 (·) and
𝐺𝑠 .𝑟𝑒𝑚𝑜𝑣𝑒 (·), we need to check whether the edge is valid. If it

is, we increase (or decrease) both 𝑡𝑐 and 𝑣𝑐 . Otherwise we only

modify 𝑣𝑐 . Second, when the new edge 𝑒 replaces 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝], we

compare it with 𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝], as shown in line 8 in Algorithm 1. If

𝐺 (𝑒) ⩾ 𝐺 (𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝]) or 𝜖𝑙𝑛𝑒𝑤

𝑙𝑜𝑙𝑑
[𝑝] is empty, we add 𝑒 to𝐺𝑠 as a valid

sample, and the operations are the same as line 9− 10 in Algorithm

1. If 𝐺 (𝑒) < 𝐺 (𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝]), we further check if 𝜖

𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝] expires. If it

expires, we tag 𝑒 as invalid and carry out𝐺𝑠 .𝑎𝑑𝑑 (𝑒) to modify 𝑣𝑐 .

Otherwise we do nothing.

Expiration algorithm: When an edge 𝑒 in 𝐺𝑠 expires, we first

carry out𝐺𝑠 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑒) to modify the counters. We can assert that

in its mapped substream 𝑝 , 𝑒 is stored in 𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝] and has larger

priority than 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝]. Because 𝑒 expires (𝑡 (𝑒) ⩽ 𝑇 − 𝑁 < 𝑙𝑛𝑒𝑤 )

and used to be a sample in 𝐺𝑠 (corresponding to 𝐺 (𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖]) >

𝐺 (𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑖]) in case 1 of Figure 4) . Therefore, after the deletion we

add 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝] to 𝐺𝑠 as an invalid sampled edge, and increase 𝑣𝑐 . We

only add 𝜖𝑇
𝑙𝑛𝑒𝑤
[𝑝] to 𝐺𝑠 after expiration of 𝜖

𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑝], so that there
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is at most 1 edge (whether valid or invalid) inserted into𝐺𝑠 in each

substream. This guarantees that 𝐺𝑠 will not has a size larger than

the upper bound 𝑘 .

When a landmark comes, we scan the 𝑘 substreams. In each sub-

stream, we set 𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖] = 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖] and 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖] = 𝑁𝑈𝐿𝐿. Besides,

we tag the invalid sampled edges as valid. As for the triangle count,

we simply set 𝑣𝑐 = 𝑡𝑐 . Compared to the basic version, massive

triangle counting at landmarks is avoided.

4.4 Estimating of Triangle Count
In this section, we show how to estimate the triangle count in the

snapshot graph 𝐺𝑇
with the sample graph 𝐺𝑠 .

Suppose there are 𝑛 distinct edges in𝐺𝑇
, and𝑚 valid sampled

edges in 𝐺𝑠 . We use 𝑡𝑐 to denote the triangle count in 𝐺𝑠 . Because

each edge in the sliding window has an equal chance to become

one of the𝑚 valid sampled edges. The probability that all the three

edges in a triangle are selected is
𝑚 (𝑚−1) (𝑚−2)
𝑛 (𝑛−1) (𝑛−2) . We can estimate

the number of triangles in the sliding window as 𝑡𝑐 × 𝑛 (𝑛−1) (𝑛−2)
𝑚 (𝑚−1) (𝑚−2) .

Detailed proof can be found in Section 4.5.

It is difficult to directly estimate 𝑛, namely the number of distinct

edges in the sliding window. Existing algorithms like [20] can not

deal with edge expiration. However, we split the streaming graph

into slices, and these slices can be viewed as fixed time windows

with no edge expiration. Therefore prior algorithms in cardinality

estimation can be used in these slices. We can first estimate the

cardinality of the slices which overlap with the sliding window,

and then estimate the cardinality of the sliding window with it.

More fortunately, as we have already stored the largest priority

in each substream, we can easily transform these priorities into a

Hypperloglog sketch [20] for cardinality estimation, and no other

data structure is needed. Hypperloglog sketch is also the state-of-

the-art for cardinality estimation.

For the 𝑖𝑡ℎ substream,we have stored𝐺 (𝜖𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖]) and𝐺 (𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖]).

The larger one between them, denoted with 𝜃 , is the largest prior-

ity in this substream in𝑊𝑇
𝑙𝑜𝑙𝑑

. It can be transformed to a variable

𝑅 [𝑖] = ⌈−𝑙𝑜𝑔(1 − 𝜃 )⌉ with 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 (1/2) distribution. If the sub-
stream is empty (both 𝜖

𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖] and 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖] in it are empty), we set

𝑅 [𝑖] = 0. Such variables in all the𝑘 substreams form aHyperLogLog

sketch [20] that estimates the cardinality of𝑊𝑇
𝑙𝑜𝑙𝑑

, namely |𝑊𝑇
𝑙𝑜𝑙𝑑
|.

|𝑊𝑇
𝑙𝑜𝑙𝑑
| can be computed as

𝛼𝑘𝑘
2∑𝑘

𝑖=1
2
−𝑅 [𝑖 ] . This equation is derived in

Hyperloglog algorithm, and 𝛼𝑘 = 0.7213/(1 + 1.079/𝑘) for 𝑘 > 128.

The error bound is also the same as the analysis in [20].

Then we further estimate the cardinality of the sliding window

𝑊𝑇
𝑇−𝑁 , namely 𝑛, with |𝑊𝑇

𝑙𝑜𝑙𝑑
|. Suppose there are𝑚 valid samples,

and 𝑀 substreams that are not empty
6
. According to theorem

4.1, we can get a valid sample in a substream with probability

|𝑊𝑇
𝑇−𝑁 |
|𝑊𝑇

𝑙𝑜𝑙𝑑
| =

𝑛

|𝑊𝑇
𝑙𝑜𝑙𝑑
| , which can be esimated as

𝑚
𝑀
. Therefore we have

𝑛 = |𝑊𝑇
𝑙𝑜𝑙𝑑
| × 𝑚

𝑀
.

Continusous query of cardinality: In order to keep track of

the cardinality to achieve continuous triangle counting, we can

6
As 𝑛 ≫ 𝑘 , the probability that a substream is empty is very small, in other words

𝑀 ≈ 𝑘

continuously maintain a variable 𝑞 =
∑𝑘
𝑖=1

2
−𝑅 [𝑖 ]

, and compute the

cardinality with it in queries. However, like triangle counter 𝑡𝑐 , 𝑞,𝑚

and𝑀 all go through a drastic change at each landmark. Because at a

landmark, emerging of new valid samples leads to change in𝑚, and

the alternation of slices results in changes in 𝜖
𝑙𝑛𝑒𝑤
𝑙𝑜𝑙𝑑
[𝑖] and 𝜖𝑇

𝑙𝑛𝑒𝑤
[𝑖],

causing changes in 𝑞 and 𝑀 . In order to avoid dense computing

at one time point, we also utilize vision counting technique upon

them. The details are omitted due to space limitation.

4.5 Error Analysis
In this section we first prove that our estimation of the triangle

count is unbiased, then we give some mathematical analysis about

the variance of the triangle estimation.

Theorem 4.4. Suppose at time 𝑇 , SWTC gets𝑚 valid sampled
edges. There are𝑛 distinct edges in the snapshot graph, and the number
of triangles induced by these sampled edges is 𝑡𝑐 . We use Δ𝑇 to present
the set of triangles in the snapshot graph𝐺𝑇 , and its number is 𝜏 . We
introduce variable 𝜏 = 𝑡𝑐

𝛾𝑇
3,𝑚

where 𝛾𝑇
3,𝑚

is defined as

𝛾𝑇𝑗,𝑚 =
𝑚(𝑚 − 1)...(𝑚 − 𝑗 + 1)
𝑛(𝑛 − 1)...(𝑛 − 𝑗 + 1) (1)

Then we have:
𝐸 (𝜏 |𝑚) = 𝜏 (2)

𝑉𝑎𝑟 (𝜏 |𝑚) = 𝜏𝜃𝑇
3,𝑚 + 2𝜁𝑇 𝜃𝑇

5,𝑚 + 2𝜂𝑇 𝜃𝑇
6,𝑚 (3)

where 𝜁𝑇 is the number of unordered pair of distinct triangles in

Δ𝑇 which share one edge, and 𝜂𝑇 = 1

2
𝜏 (𝜏 − 1) − 𝜁𝑇 is the number

of unordered pairs of distinct triangles in Δ𝑇 which share no edge.

And we define 𝜃𝑇
3,𝑚

= 1

𝛾𝑇
3,𝑚

−1, 𝜃𝑇
5,𝑚

=
𝛾𝑇

5,𝑚

(𝛾𝑇
3,𝑚
)2 −1, 𝜃𝑇

6,𝑚
=

𝛾𝑇
6,𝑚

(𝛾𝑇
3,𝑚
)2 −1

Proof. First we prove the correctness of the expectation. We

propose the following lemma:

Lemma 4.1. At time 𝑇 , the probability of SWTC sampling edge
𝑒1, 𝑒2 ....𝑒 𝑗 given𝑚 is

𝑃 (𝑒1, 𝑒2 .....𝑒 𝑗 ∈ 𝐺𝑠 |𝑚) = 𝛾𝑇𝑗,𝑚 (4)

where 𝛾𝑇
𝑗,𝑚

is defined as equation 1.

Given 𝑗 different edges 𝑒1, 𝑒2 ....𝑒 𝑗 and a set of different sub-

streams {𝑆𝑐1
, 𝑆𝑐2

...𝑆𝑐 𝑗 }, where all these substreams have valid sam-

pled edges. We can compute the probability that edge 𝑒𝑖 is sampled

in substream 𝑆𝑐𝑖 (1 ⩽ 𝑖 ⩽ 𝑗). Because each edge is mapped into

a substream at random, and the priority is randomly generated,

we can find that any 𝑗 different edges has equal probability to be

sampled in these substreams. There are totally 𝑛(𝑛− 1) ....(𝑛− 𝑗 + 1)
different ways of selecting 𝑗 different edges and putting them into

these substreams. Therefore the probability that a particular combi-

nation is selected is
1

𝑛 (𝑛−1) ....(𝑛−𝑗+1) . Suppose the set 𝜑 represent

the indexes where 𝑆𝑖 has a valid sampled edge if 𝑖 ∈ 𝜑 . |𝜑 | = 𝑚.

There exist𝑚(𝑚 − 1) ....(𝑚 − 𝑗 + 1) different ways to select indexes

{𝑐1, 𝑐2 ...𝑐 𝑗 } where 𝑐1, 𝑐2 ...𝑐 𝑗 ∈ 𝜑 . Therefore, the overall probability
that 𝑗 edges 𝑒1, 𝑒2 ....𝑒 𝑗 are sampled as valid sampled edges are:

𝑃 (𝑒1, 𝑒2 .....𝑒 𝑗 ∈ 𝐺𝑠 |𝑚) =
𝑚(𝑚 − 1) ....(𝑚 − 𝑗 + 1)
𝑛(𝑛 − 1) ....(𝑛 − 𝑗 + 1)

According to this lemma, we find that any triangle with three

edges 𝑒1, 𝑒2, 𝑒3 in the snapshot graph 𝐺𝑇
has probability 𝛾𝑇

3,𝑚
=
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𝑚 (𝑚−1) (𝑚−2)
𝑛 (𝑛−1) (𝑛−2) to be included in the sample. Therefore, given the

number of triangles in the sample, 𝑡𝑐 , we have:

𝐸 (𝜏 |𝑚) = 𝐸 ( 𝑡𝑐
𝛾𝑇

3,𝑚

) = 𝜏

Next we compute the variance of 𝜏 . For a triangle 𝜎 in the snap-

shot graph𝐺𝑇
, we set a variable 𝜉𝑇𝜎 to be 1 if all the 3 edges of 𝜎 are

valid sampled edges at time 𝑇 and 0 otherwise. We can compute

the variance of 𝜏 given the number of valid sample edges𝑚 as:

𝑉𝑎𝑟 (𝜏 |𝑚) = 𝑉𝑎𝑟 (
∑
𝜎 ∈Δ𝑇 𝜉

𝑇
𝜎

𝛾𝑇
3,𝑚

|𝑚)

=

∑
𝜎,𝜎∗∈Δ𝑇 𝐶𝑜𝑣 (𝜉𝑇𝜎 , 𝜉𝑇𝜎∗ |𝑚)

(𝛾𝑇
3,𝑚
)2

=

∑
𝜎 ∈Δ𝑇 𝑉𝑎𝑟 (𝜉𝑇𝜎 |𝑚)
(𝛾𝑇

3,𝑚
)2

+∑
𝜎,𝜎∗∈Δ𝑇 ,𝜎≠𝜎∗ 𝐸 (𝜉𝑇𝜎 𝜉𝑇𝜎∗ |𝑚) − 𝐸 (𝜉𝑇𝜎 |𝑚)𝐸 (𝜉𝑇𝜎∗ |𝑚)

(𝛾𝑇
3,𝑚
)2

According to lemma 4.1, we have

𝑉𝑎𝑟 (𝜉𝑇𝜎 |𝑚) = 𝛾𝑇3,𝑚 − (𝛾
𝑇
3,𝑚)

2
(5)

𝐸 (𝜉𝑇𝜎 |𝑚)𝐸 (𝜉𝑇𝜎∗ |𝑚) = (𝛾𝑇3,𝑚)
2

(6)

𝐸 (𝜉𝑇𝜎 𝜉𝑇𝜎∗ |𝑚) =
{
𝛾𝑇

5,𝑚 𝜎 𝑎𝑛𝑑 𝜎 ∗ 𝑠ℎ𝑎𝑟𝑒 𝑜𝑛𝑒 𝑒𝑑𝑔𝑒.

𝛾𝑇
6,𝑚 𝜎 𝑎𝑛𝑑 𝜎 ∗ 𝑠ℎ𝑎𝑟𝑒 𝑛𝑜 𝑒𝑑𝑔𝑒.

(7)

Given the definition of 𝜁𝑇 , 𝜂𝑇 , 𝜃𝑇
3,𝑚

, 𝜃𝑇
5,𝑚

and 𝜃𝑇
6,𝑚

, we can get

equation 3 in theorem 4.4 with the former equations. □

The expectation and variance of the baseline method is similar,

except that the number of valid sample edges is smaller than SWTC.

Therefore SWTC has a smaller variance.

4.6 Extension to Other Semantics
WeightedCounting: Inweighted counting, each triangle is weighted
with the multiplication of the frequencies of its three edges. If we

treat 𝑓 occurences of an edge as 𝑓 distinct edges, a triangle with

weight 𝑤 can also be seen of 𝑤 distinct triangles induced by dif-

ferent edge tuples. Therefore, when applying SWTC to weighted

counting, we replace the hash functions 𝐻 (·) and 𝐺 (·), which are

responsible for mapping an edge to substreams and generating pri-

orities, with random functions. In other words, multiple occurences

of an edge may be mapped to different substreams and get different

priorities. Besides, we carry out weighted counting in the sample

graph 𝐺𝑠 and maintain the result in 𝑡𝑐 . The other operations are

the same as the binary counting. The analysis in Section 4.2 and

Section 4.5 applies to weighted counting. The only difference is

that denotations like |𝑊 𝑡2

𝑡1

| and 𝜏 represent edge count or triangle
count with duplication in weighted counting semantics. A detailed

analysis is presented in the technical report [23].

Directed Graphs: In prior works, triangle is defined without

edge directions. When edge directions are considered, it is in fact

a more general problem named motif counting [25, 26]. There are

multiple kinds of triangle-shape motifs with different direction con-

straints, and our algorithms apply to all of them. Suppose we get a

sample graph with𝑚 edges with SWTC or the baseline method, and

the size of the snapshot graph is 𝑛. According to Lemma 4.1, a motif

with 𝑗 edges has probability
𝑚 (𝑚−1) ...(𝑚−𝑗+1)
𝑛 (𝑛−1) ...(𝑛−𝑗+1) to be included in the

sample graph. Therefore, for any motif with size 𝑗 , we can count it

in the sample graph, and divide the count with
𝑚 (𝑚−1) ...(𝑚−𝑗+1)
𝑛 (𝑛−1) ...(𝑛−𝑗+1)

to get an estimation of the motif count in the snapshot graph. We

focus on triangles for simplicity in this paper.

5 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate our method over three

real-world datasets and one synthetic dataset. Details about the

datasets, experiment settings and metrics are shown in Section 5.1,

Section 5.2 and Section 5.3, respectively. As discussed in Section

4.6, weighted counting is similar to binary counting if we view

the duplicate copies of an edge as distinct edges. Therefore, we

focus on binary counting in Section 5.4 and Section 5.5. In these

subsections, we evaluate the valid sample size and accuracy of

SWTC and compare it with the baseline method. In Section 5.6,

we evaluate the performance in weighted counting semantics. We

also evaluate two most recent fully dynamic algorithms WRS [22]

and ThinkD [18] in sliding window model by storing the entire

sliding window. Notice that prior work for fully dynamic model

only applies to weighted counting semantics. Therefore we only

compare with them in Section 5.6. In Section 5.7 and Section 5.8,

we further evaluate the influence of duplication ratio and the effect

of vision counting. Experiments are implemented in a PC server

with dual 18-core CPUs (Intel Xeon CPU E5-2697 v4@2.3G HZ, 2

threads per core) and 192G memory, running CentOS. All codes are

written in C++ and compiled with GCC 4.8.5.

5.1 Data Sets
Three real-world datasets and one synthetic dataset are used in

experiments. In order to make the window length intuitive, we

divide the total time span of each dataset with the number of edges

in it to get the average time span between two edge arrivals, and

use this average time span as the unit of the window length. The

frontier of the sliding window, 𝑇 , is set to the timestamp of the last

edge that the algorithm has processed. The datasets are as follows:

(1)StackOverflow:7 This is a dataset of interactions on the stack

exchange website Stack Overflow. Nodes are users and edges repre-

sent user interactions. There are 63,497,050 edges with duplication

and 2,601,977 nodes.

(2)Yahoo network:8 This is a network flow dataset collected from

three border routers by Yahoo. We use IP addresses as nodes and

communications among them as edges. It includes 561,754,369 edges

and 33,635,059 nodes.

(3)Actor:9 This is a dataset describing cooperation of actors. Nodes

are actors and edges represent films in which they cooperate. There

are totally 33,115,812 edges with duplication and 382,219 nodes.

(4)FF: This is a synthetic dataset generated by Fire-Forest model

[27]. It includes 18, 311, 282 edges and 1 million nodes. There are no

duplicate edges.We generate edge frequencies for it with power-law

distribution and vary the duplication ratio to carry out experiments

in Section 5.7.

7
http://snap.stanford.edu/data/sx-stackoverflow.html

8
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g

9
http://konect.cc/
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The last two datasets do not have timestamps. Therefore we

randomly generate timestamps for them. We shuffle the dataset

three times and compute the average performance whenever we

use them. For the StackOverflow and Yahoo network, as they have

original timestamps, we sort the dataset by these timestamps.

5.2 Experiment Settings
The number of substreams, denoted with 𝑘 , decides the memory

used in both SWTC and the baseline method. In applications, it

is set according to the available memory. But it should be noted

that as shown in Section 4.5, too small sample size will bring a

large variance. We define the ratio of 𝑘 against the window length

𝑁 as sample rate, where the window length uses average time

span as unit. As will be shown in Figure 7(b), we vary the sample

rate to carry out experiments, and results show that we can get a

promising accuracy when the sample rate is larger than 4%. Further

growing sample size brings relatively slow increment on accuracy.

Therefore, we suggest 𝑘 to be set 4% ∼ 6% of the window length, if

the memory is enough. We also use this setting in our experiments,

and two methods (SWTC and baseline) have the same sample rate

and the same memory usage. The hash functions used in SWTC

and the baseline method are BobHash [28] and MurmurHash [29].

Any popular hash functions like RSHash [30], APHash [31] and

MurmurHash [29] can be used without influencing the performance.

More hash functions can be found at [31].

We set a checkpoint whenever the window slides
1

10
of the win-

dow length, namely when the maximum timestamp of the inserted

edges increases by
1

10
𝑁 . We measure metrics at these checkpoints,

and compute the average value of all checkpoints as experiment

results. When the number of inserted edges is less than two times

of the window length, we do not set any checkpoint, as there are

not enough expired edges and both algorithms produce large but

not representative sample sets. For Actor, StackOverflow and FF we

estimate the performance of the two algorithms at 100 checkpoints

(when there are less than 100 checkpoints due to the limitation

of the dataset size, we estimate the performance at all available

checkpoints). For Yahoo network, in which the window length is

very large and compute the accurate triangle count is too time

consuming, we estimate the performance at 40 checkpoints.

5.3 Metrics
In the experiments we evaluate 3 metrics of the algorithms: average

valid sample size, percentage of valid sample, and MAPE of triangle

count, defined as follows:

AverageValid Sample Size: In both SWTC and the baselinemethod,

the number of valid sampled edges varies as the window slides. We

measure the number of valid sampled edges at each checkpoint,

and compute the average value of all checkpoints to get the average

valid sample size.

Percentage of Valid Sample: The ratio of the number of valid

sampled edges against the total number of substreams.

MAPE: At each checkpoint, we compute the accurate triangle

count, denoted as 𝜏 , and the estimated triangle, 𝜏 . The Absolute Per-

centage Error (APE) is estimated as

���𝜏−𝜏𝜏 ���. We compute the average

value of all the checkpoints to get Mean Absolute Percentage Error

(MAPE).

Besides, in Section 5.7, we vary the duplication ratio the carry

out experiments. The duplication ratio is defined as follows:

Duplication Ratio: 1 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑒𝑑𝑔𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑒𝑑𝑔𝑒𝑠
.

5.4 Valid Sample Size
We conduct experiments on sample size in two ways. First, in order

to confirm our mathematical analysis in Section 4.2, we build a

dataset with steady throughput: we filter out duplicate edges in

Actor and arrange the timestamps so that there are exactly one

edge in each time unit. In such dataset, the cardinality of a window

is linear correlated with the window size. Note that this specialized

dataset is only used in this experiment. We evaluate the percentage

of valid sample of SWTC and the baseline in it. The result is shown

in Figure 5, where the window length is set to 4 million and the

𝑥-axis denotes the total number of processed time units (i.e. average

time span defined in Section 5.1). The sample rate is set to 4%. In

Figure 5, we can see that the baseline method always get a 56%

percentage of valid sample. On the other hand, the percentage of

valid sample in SWTC various varies from 50% to 100% in a cycle,

and the average value is 75%. This conforms to our mathematical

analysis in theorem 4.3. Moreover, at 25 checkpoints, SWTC gets

a much larger valid sample size. At the remaining 6 checkpoints,

SWTC and the baseline method obtain similar valid sample size.
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We also report the average valid sample size in the three datasets

in Figures 6(a) 6(b) and 7(a). For Actor and StackOverflow, we fix

the sample rate to be 4% and vary the window length. For Yahoo

network, we fix the window length to be 35 million and vary the

sample rate. We can see that the valid sample size rises with the

increasing of the window length and the sample rate, as the both

brings a larger 𝑘 . And SWTC always has a larger sample size than

the baseline method. The gap between them varies since the car-

dinality of the sliding window varies with the throughput of the

stream and the duplication ratio in the window. In average the

sample size in 𝑆𝑊𝑇𝐶 is 30% larger.

5.5 Accuracy
Figures 6(c), 6(d) and 7(b) show the mean absolute percentage error

(MAPE) of all checkpoints in each dataset to measure the accuracy

of SWTC and the baseline method. The parameter settings are

the same as the valid sample size experiments. From the figures,

we can see that SWTC has an MAPE up to 62% smaller than the

baseline. And in all experiments, MAPE of SWTC is below 0.1. In

Figure 6(c), we can see that the MAPE has a decreasing trend as

the window length grows. Because when there are more triangles

in the window, the influence of randomicity decreases and the

estimated result becomes stable and accurate. Figure 7(b) shows

that MAPE has a trend of decrement when the sample rate grows.

This is intuitive, as a larger sample set produces a higher accuracy.

5.6 Experiments on Weighted Counting
We carry out an experiment on weighted counting with Stack-

Overflow dataset, with window length set to 4.5 million. Besides

comparing with the baseline, we also compare SWTC with 2 prior

algorithms in fully dynamic stream model, WRS[22] and ThinkD

[18]. The MAPE is shown in Figure 8, where the x axis is the mem-

ory usage. As discussed in Section 3, WRS and ThinkD need to store

the entire sliding window to work. We keep tracking the number

of edges as the window slides, and find that the maximum number

of edges in the sliding window is 5.4 million. Therefore, we reserve

space for storing 5.4 million edges for WRS and ThinkD. Each edge

has 2 node IDs and one timestamp, each of which occupies 8 bytes.

As the edges are organized as a linked list, an additional pointer

is needed by each edge. Therefore 32 bytes are needed for each

edge in the sliding window. In total, WRS and ThinkD need at least

172.8𝑀 memory to start to work. Therefore, in the figure we begin

to present their accuracy at 180𝑀 . We can see that they begin to

have MAPE lower than 4% only when the memory is larger than

240𝑀 . On the other hand, our algorithms get same accuracy with

only 60𝑀 memory. In other words, our algorithms achieve com-

petitive performance with much less space. Besides, the memory

used by WRS and ThinkD is unbounded in real world applications.

Because the number of edges in the sliding window varies with the

throughput, and they need to store all the edges to work. The result

in Figure 8 also shows that in weighted counting, SWTC still has a

higher accuracy than the baseline.
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Figure 8: Accuracy of Weighted Counting

5.7 Influence of Duplication Ratio
In order to evaluate the influence of duplication ratio of the stream-

ing graph, we use the synthetic dataset FF to carry out experiments.

We generate edge frequencies with power-law distribution and

vary the duplication ratio. The window length is set to be 3 million

and the sample rate is set to be 4%. The memory usage and the

valid sample size does not change with the duplication ratio. In

binary counting semantics, MAPE decreases with the increment

of duplication ratio, the result is shown in Figure 9. Because with

more duplicate edges, the number of distinct edges in the sliding

window decreases, and the sample size becomes relatively large. In

weighted counting semantics, the accuracy does not change with

the duplication ratio, because we treat duplicate edges the same as

distinct edges. We omit the figure due to space limitation.
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5.8 The Effect of Vision Counting
In order to illustrate the effect of vision counting, we compare the

speed fluctuation of the final version of SWTC with the basic ver-

sion. We call the basic version which does not use vision counting

as SWTC-nv. We use FF dataset in this experiment, and set the

window length to be 4 million. The sample rate is set to 4%, and

the triangles are count in binary counting semantics. We calculate

average processing speed of the algorithms in each batch with 40𝐾

time units, and draw the curve of processing speed varying with

total number of processed time units. The result is shown in Figure

10. The measurement of speed is kilo insertions per second (Kips).

The figure shows the change of speed at a landmark. We can see

that at the landmark, the speed of SWTC-nv suffers from a sharp

decrease. Because at the landmark, SWTC-nv need a period as long

as 0.04𝑠 to add new valid samples and count the triangles. The

processing of edges received during this period is delayed. This

delay will be worse when the sliding window is larger. On the other

hand, if we use vision counting, though the speed is a little lower,

but there will be no computation peak at the landmark.

6 RELATEDWORK
6.1 Prior Arts in Triangle Counting
The problem of counting triangles in large graphs has been re-

searched for decades. It can be divided into 2 problems, counting

global triangles (triangles in the entire graph) and local triangles

(triangles which include a certain node). In this paper we focus on

counting global triangles. Compared to algorithms [32–36] which

exactly count the number of triangles in large graphs, approxi-

mately counting algorithms [37–40] are much faster and consume

less memory. Recent work in approximation triangle counting in-

cludes the algorithm of Pavan et al. [8] which uses a neighbor-

hood sampling to sample and count triangles, and the algorithm

of Jha et al. [41] which samples wedges to estimate triangle count.

Tsourakakis et at. [42] proposes to sample each edge with a fixed-

probability and their algorithm can be directly used in streaming

graphs. Ahmed et al. [9] presents a general edge sampling frame-

work for graph statistics estimation including the triangle count.

The above algorithms do not consider edge duplication. TRIÈST

[17] uses reservoir samplingmethod [43] and has a fixed sample size.

It supports edge deletions in fully dynamic streaming graphs with

a technique named random pairing [44]. It also supports weighted

counting with edge duplication. But it can neither support binary

counting, nor support sliding window model. PartitionCT [10] es-

timates triangle counts in streaming graphs by filtering duplicate

edges and counting binary triangles. It divides the streaming graph

into substreams with a hash function. In each substream, it per-

forms a priority sampling with another hash function. PartitionCT

also solves the problem of cardinality estimation with the help of

prior works including [20, 21]. However it cannot be directly used in

sliding windows, as it does not support edge expiration. Subsequent

work includes [16, 18, 22], but they either do not support deletion

or do not support binary counting semantics. Besides, as discussed

in Section 3, even algorithms supporting deletions in fully-dynamic

model cannot support the expiration in sliding windows. To the

best of our knowledge, no algorithm has addressed the problem of

triangle count estimation in streaming graphs with sliding window

and edge duplication using bounded-size memory.

6.2 Sampling Algorithms in Sliding Windows
It has been proved impossible to maintain a fixed-size sample with

bounded memory over a time-based sliding window [19]. Therefore

most related works sample data streams in sliding windows with

unbounded memory like [24, 45, 46]. We find them not suitable

for sampling in the triangle counting problem for 2 reasons. First,

unbounded memory usage makes it difficult to reserve enough

memory in advance. Second, most of them need to compute sample

set upon query, but we hope to achieve continuous query in triangle

counting. BPS algorithm [19] suits the need of triangle counting

most. Because It has a strict upper bound of the memory usage and

achieves continuous query. But its sample set has an uncertain size

as a cost. In the baseline method, we use a simplified version of

BPS, where we only need to maintain at most one sample in the

sliding window. The extended version where multiple samples are

produced can be found in the original paper [19].

6.3 HyperLogLog Algorithm
The HyperLogLog algorithm [20] is proposed by Flajolet et al. It is a

highly compact algorithm to estimate the number of distinct items

(i.e. cardinality) in a set. It uses a sketch with𝑚 counters 𝑐1 .𝑐2 .....𝑐𝑚
and 2 hash functions. The counters are all 0 initially. One hash

function is 𝑔(·) which uniformly maps the input to integers in

range 1 ∼ 𝑚. The other hash function is 𝑦 (·) whose output has

a Geometric( 1

2
) distribution. In other words, the probability that

𝑦 (𝑒) = 𝑥 is
1

2
𝑥 for 𝑥 = 1, 2, 3.... When inserting an item 𝑒 , it first

uses 𝑔(·) to map it to one of the𝑚 counters 𝑐𝑖 (1 ⩽ 𝑖 ⩽𝑚). Then it

computes 𝑦 (𝑒) and set 𝑐𝑖 = 𝑦 (𝑒) if 𝑦 (𝑒) > 𝑐𝑖 . After inserting all the

items, apparently a counter will get higher value whenmore distinct

items are mapped to it, and duplicate items will not influence the

sketch, as the same item will always get the same value in 𝑦 (·) and
𝑔(·). The cardinality is estimated as

𝛼𝑚𝑚2∑𝑚
𝑖=1

2
−𝑐𝑖 , and 𝛼𝑚 is used to

correct the bias which is 𝛼𝑚 = 0.7213/(1 + 1.079/𝑚) for𝑚 > 128.

The error percentage is about
1.04√
𝑚
.

7 CONCLUSION
Triangle counting in real-world streaming graphs with edge dupli-

cation and sliding windows has been an unsolved problem. In this

paper, we propose an algorithm named 𝑆𝑊𝑇𝐶 . It uses an original

sample strategy to retain a bounded-size sample of the snapshot

graph in the sliding window.With this sample, we can continuously

monitor the triangle count in the sliding window with bounded

memory usage. Mathematical analysis and experiments show that it

generates a larger sample set and has higher accuracy than the base-

line method, which is a combination of several existing algorithms,

under the same memory consumption.
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