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Abstract— In this demonstration, we present the gStore RDF
triple store. gStore is based on graph encoding and subgraph
match, distinct from many other systems. More importantly, it
can handle, in a uniform manner, different data types (strings and
numerical data) and SPARQL queries with wildcards, aggregate,
range and top-k operators over dynamic RDF datasets. We will
demonstrate the main features of our system, show how to search
Wikipedia documents using gStore and how to build users’ own
application using gStore through C++/Java API.

I. Introduction
Although RDF data management has been studied in the

past decade, most early solutions failed to scale up to large
RDF repositories. More current native RDF stores, such as
RDF-3x [1], Hexastore [2] and SW-store [3] can handle large
repositories, but are restricted in the types of queries they
can handle (they cannot handle wildcard queries, range and
top-k queries, aggregates) and many have difficulties dealing
with frequent updates to the data. All of these systems map
RDF data to a relational model and translate SPARQL queries
to SQL. There are also extensions to commercial relational
DBMSs (e.g., DB2-RDF [4]) that provide support for RDF
data. The large number of joins (sometimes self-joins) and the
difficulty of optimizing them is one reason for their scalability
issues.

gStore [5], [6] is a graph-based RDF data management
system (or what is commonly called a “triple store”) that
maintains the graph structure of the original RDF data. Its
data model is a labeled, directed multiedge graph (called RDF
graph – See Figure 1), where each vertex corresponds to a
subject or an object. We also represent a given SPARQL
query by a query graph Q (Figure 2). Query processing
involves finding subgraph matches of Q over the RDF graph
G. gStore incorporates an index over the RDF graph (called
VS*-tree) to speed up query processing. VS*-tree is a height-
balanced tree with a number of associated pruning techniques
to speed up subgraph matching. Technical details of gStore
have been published before [5], [6] and are summarized in
Section III of this paper. In this demonstration paper we
present the prototype system architecture and functionality.
The associated demonstration will cover execution of SPARQL
queries over RDF data extracted from Wikipedia, and the
associated optimization techniques that the gStore optimizer
uses.

II. System Architecture
In this section, we present the system architecture, as

illustrated in Figure 3. The whole system consists of an offline
part and an online part.

The offline process is to store a RDF dataset and build the
VS∗-tree index. We briefly describe the main components (as
shown in Figure 3): RDF parser accepts three popular RDF
file formats (RDF/XML, N3, Turtle). The parsing result is a
collection of RDF triples. Based on the parsed triples, we build
an RDF graph using adjacency list representation, where each
entity is a vertex (represented by its URI) and the incident
edges to the vertex correspond to the triples containing the
entity. We use a key-value store to index the adjacency lists,
where URIs are keys. In the encode module, we encode the
RDF graph G into a signature graph G∗. Specifically, each
vertex in G∗ has a bitstring that encodes the neighborhood
structure around the vertex. Finally, VS∗-tree builder is to
construct a VS∗-tree over G∗. The signature graph G∗ and
the VS∗-tree are stored in key-value store and VS∗-tree store,
respectively.

The online system consists of four modules. A SPARQL
statement is the input to the SPARQL parser, which is gen-

Subject Property Object
mdb:film/2014 rdfs:label “The Shining”
mdb:film/2014 movie:initial release date “1980-05-23”
mdb:film/2014 movie:director mdb:director/8476
mdb:film/2014 movie:actor mdb:actor/29704
mdb:film/2014 movie:actor mdb:actor/30013
mdb:film/2014 y:hasDuration 7140.0$#s
mdb:film/2014 y:hasBudget 22000000#$
mdb:film/2014 y:hasImdb “0081505”

mdb:actor/29704 movie:actor name “Jack Nicholson”
mdb:actor/29704 y:wasBornIn 1937-04-22
mdb:actor/29704 rdf:type movie:actor

mdb:director/8476 movie:director name “Stanley Kubrick”
mdb:film/2685 movie:director mdb:director/8476
mdb:film/2685 rdfs:label “A Clockwork Orange”
mdb:film/424 y:hasBudget 22000000#$
mdb:film/424 y:hasBoxOffice 26589355#$
mdb:film/424 movie:director mdb:director/8476
mdb:film/424 rdfs:label “Spartacus”
mdb:film/424 y:hasBudget 12000000#$
mdb:film/424 y:hasBoxOffice 60000000#$
geo:2635167 gn:name “United Kingdom”
geo:2635167 gn:population 62348447
geo:2635167 gn:wikipediaArticle wp:United Kingdom

bm:books/0743424425 dc:creator bm:persons/Stephen+King
bm:books/0743424425 rev:rating 4.7
bm:books/0743424425 scom:hasOffer bm:offers/0743424425

lexvo:iso639-3/eng rdfs:label “English”
lexvo:iso639-3/eng lvont:usedIn lexvo:iso3166/CA
lexvo:iso639-3/eng lvont:usesScript lexvo:script/Latn

TABLE I
RDF Data
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Fig. 1. An RDF graph G

?x

?y

?z

mdb:movie
rdf:type

moive:director

“*Jack*”
moive:actor_name

y:hasBudget

?budget<30000000
Desc, top10

movie:actor

SELECT  ?x ?y  WHERE{
    ?x    hasBudget ?budget.
    ?x    rdf:type mdb:movie.
    ?x    movie:director ?y.
    ?y    movie:actor_name ?z.
    FILTER(
        regex(str(?z),``Jack'') 
        AND (?budget <30000000) 
    )
}ORDER BY ?budget
LIMIT 10

Fig. 2. SPARQL and Query Graph Q
erated by a parser generator library called ANTLR31. The
SPARQL query is parsed into a syntax tree, based on which,
we build a query graph Q and encode it into a query signature
graph Q∗. The encoding strategy is analogue to encoding RDF
graphs.

The online query evaluation process consists of two steps:
filtering and joining. First, we generate the candidates for each
query node using VS∗-tree. Then, applying a depth-first search
strategy, we perform the multi-way join over these candidate
lists to find the subgraph matches of SPARQL query Q over
RDF graph G.

III. Techniques

In this section, we briefly discuss the techniques used in
gStore system; full details are given in elsewhere [5], [6]. Ac-
cording to our framework in Section II, we solve the SPARQL
query processing by subgraph matching over the signature
graph. A key issue is that the proposed encoding and pruning
strategies should support, in a uniform manner, different kinds
of data (such as strings and numeric data), and SPARQL
queries with different operators . We discuss the encoding and
pruning methods in Section III-A. Another technical issue is
the index structure, which is discussed in Section III-B. We
also present some system-oriented optimization, such as index
caching strategy and multicore-based query optimization.

A. Encoding Techniques

In gStore, answering SPARQL queries is equivalent to
finding subgraph matches of query graph Q over RDF graph
G. If vertex v (in query Q) can match vertex u (in RDF graph
G), each neighbor vertex and each adjacent edge of v should
match to some neighbor vertex and some adjacent edge of u.

1http://www.antlr3.org/
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Fig. 3. System Architecture

Thus, given a vertex u in G, we encode each of its adjacent
edge labels and the corresponding neighbor vertex labels into
bitstrings, denoted as vS ig(u). We encode query Q with the
same encoding method. Consequently, the match between Q
and G can be verified by simply checking the match between
corresponding encoded bitstrings.

Given a vertex u, we encode each of its adjacent edges
e(eLabel, nLabel) into a bitstring, where eLabel is the edge
label and nLabel is the vertex label. This bitstring is called
edge signature (i.e., eS ig(e)). It has two parts: eS ig(e).e,
eS ig(e).n. The first part eS ig(e).e (M bits) denotes the edge
label (i.e., eLabel) and the second part eS ig(e).n (N bits)
denotes the neighbor vertex label (i.e., nLabel). The code of
vS ig(u) is formed by performing OR operator over all eS ig(e).
Figure 4 illustrates the process.

mdb:film/2014

mdb:director/8476

mdb:actor/29804 moive:director

“1980-05-23”

y:hasBudget

“22000000#dollar”

movie:initial_release_date

movie:actor

e1            rdfs:label                                 "The Shining"
e2            movie:initial_release_date  "1980-05-23"
e3            movie:director                       mdb:director/8476
e4            movie:actor                            mdb:actor/29704
e5            movie:actor                            mdb:actor/30013
e6            y:hasDuration                        7140.0$#s
e7            y:hasBudget                           22000000$#$
e8            y:hasImdb                               "0081505"

rdfs:label"The Shining"

hasDuration

hasDuration

 "0081505"

y:hasImdb

                    eSig.e                           eSig.n
e1           001000010          000010000101000
e2           000110000          000000011100000
e3           100100000          000010010000001
e4           000010010          001001000000001
e5           000010010          001001010000000
e6           101000000          000001001100000
e7           001010000          000010000001001
e8           100010000          001000001001000

nSig          101110010          001011011101001

Fig. 4. Encoding Technique

1) Computing eS ig(e).e: Given an RDF repository, let |P|
denote the number of different properties. If |P| is small, we
set |eS ig(e).e| = |P|, where |eS ig(e).e| denotes the length of
the bitstring, and build a 1-to-1 mapping between the property
and the bit position. If |P| is large, we resort to the hashing
technique. Let |eS ig(e).e| = M. Using an appropriate hash
function, we set m out of M bits in eS ig(e).e to be ‘1’.
Specifically, we employ m different string hash functions Hi

(i = 1, ...,m), such as BKDR and AP hash functions. For each
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hash function Hi, we set the (Hi(eLabel) MOD M)-th bit in
eS ig(e).e to be ‘1’, where Hi(eLabel) denotes the hash function
value. We have discussed the parameter setting problem in our
research paper [6].

2) Computing eS ig(e).n: A neighbor vertex label (i.e.,
nLabel) has three different kinds of data: URI, string and
numerical data, where the latter two are called “literals”. We
suppose that the number of bits in e.S ig(e).e is N.

If nLabel is URI, we have the same encoding strategy with
eS ig(e).e, i.e., setting n out of N bits in eS ig(e).n to be ‘1’
by the n different hash string functions.

If nLabel is a string, in order to support wildcard oper-
ators, we have the following encoding strategy: We first
represent nLabel by a set of q-grams [7], where an q-gram
is a subsequence of q characters from a given string. For
example, “Jack Nicholson” is represented by a set of 3-grams:
{(Jac),(ack),(ck ),...,(son)}. Then, we use a string hash function
H for each q-gram g to obtain H(g). We set the (H(g) MOD
N)-th bit in eS ig(e).n to be ‘1’. We also use n different hash
functions for each q-gram. Finally, the string’s hash code is
formed by performing bitwise OR over all q-gram’s hash
codes. Figure 5 demonstrates the whole process.

mdb:actor/29704 movie:actor_name "Jack_Nicholson"

"Jack_Nicholson"

"Jac.." 0000 0001 1000 0000

".ack." 0000 1100 0000 0000

".ck_." 0000 0000 0100 0010

     ...…                                               …...

"..son" 0100 0000 0100 0000

"Jack_Nicholson"                           0100 1101 1100 0010

OR

Fig. 5. Encoding Strings

Consider the wildcard filter in the running example, i.e.,
regex(str(?z),“Jack”); it means that the matching vertex in RDF
graph should contain “Jack”. Obviously, if a matching vertex
v contains “Jack”, let X and Y denote the codes of “Jack”
and v, respectively, it is straightforward to known X ∧ Y = X,
where “∧” denotes the bitwise ADD operator. Otherwise, v
does not contain “jack”; this is the basic idea of our pruning
techniques, as illustrated in the following theorem.

Theorem 1. Given a wildcard filter W (in SPARQL) and a
string label nLabel (in RDF graph), if c(W) ∧ c(nLabel) ,
c(W), where c(label) and c(W) denotes the corresponding
bitstring codes, nLabel cannot contain W.

If nLabel is numerical data, in order to support SPARQL
with the range operators (such as “budget > 11 AND budget <
13”), we work as follows. The most interesting result is that
our method uses the same bitwise ADD operator for pruning
in range queries. In other words, gStore supports SPARQL
queries with different operators (wildcard and range queries)
in a uniform manner.

Suppose that a property P is a numeric property, i.e., its
property values are numeric data. Let [L,U] denote the value

range of the property P, where L and U denote the lower
bound and the upper bound, respectively. Let us consider the
numeric property “budget” and suppose that its value range is
[0, 64]. We divide the range into two equal parts, as shown in
Figure 6. If nLabel ≤ 32, the codes in the first layer is “10”;
otherwise, it is “01”. Then, in the second layer, we divide
the range into 22 (=4) equal parts. The code depends on the
position of nLabel with regard to the four parts. For example,
if nLabel = 13, it falls in the first part. So, the code is “1000”.
We iterate the above steps until k-th layer, where k is a user-
specified parameter. Generally speaking, in the k-th layer, we
divide the whole rang into 2k equal parts. The code on the k-th
layer depends on the position of nLabel with regard to the 2k

parts. The full code of nLabel is formed by linking the codes
in the k layers sequentially. Figure 1 illustrates the codes of
11 and 13, denoted as c(11) and c(13), respectively.

320 64

1 0

1 00 0

0
00 01 00 0

0 00 01 00 00 00 01 00 0

c(11): 10,1000,01000000,0010000000000000

c(13): 10,1000,01000000,0001000000000000

k=1

k=2

k=3

k=4

8 16124

Fig. 6. Encoding Numeric Data

Next, we discuss how to encode a value range in SPARQL,
such as (budget > 11 AND budget < 13). We find that the
codes of 11 and 13 share the same bits in the first three
layers, because they belong to the same parts in the first three
layers’ resolutions. They are separated in the 4-th layer. More
interestingly, nLabel ∈ [11, 13] also shares the same codes in
the first three layers.

Generally speaking, given a value range [L,U], suppose that
the codes of L and U are c(L) and c(U), respectively. The
range code is c([L,U]) = c(L) ∧ c(U), where “∧” denotes the
bitwise ADD operator. Furthermore, we have the following
pruning theorem.

Theorem 2. Given a value range [L,U] (in SPARQL query)
and a numeric data nLabel (in RDF graph), if c(L,U) ∧
c(nLabel) , c(L,U), nLabel < [L,U].

The above theorem also adopts bitwise ADD operator for
pruning, which is the same with Theorem 1. This is the reason
why our method can support different kinds of SPARQL
queries in a uniform manner.

B. Index Structure & Query Evaluation

According to the encoding technique, each node in both
query graph and RDF graph are encoded into a bitstring,
respectively. Theorems 1 and 2 tells us the basic pruning
principle. In order to speed up filtering, we design an index,
called VS∗-tree, which is a height-balanced tree [8], where
each node is a bitstring that corresponds to each vertex’s code.
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It is a multi-level summary tree where the leaves contains the
vertices in the original encoded RDF graph, and higher levels
summarize the structure of the level below it. In the filtering
process, we visit VS∗-tree from the root and judge whether
the visited nodes are candidates. Once a node does not meet
the condition at one level, we prune all its descendant nodes.
Then, each vertex in query graph has a candidate list. Finally,
applying a depth-first search strategy, we perform the multi-
way join over these candidate lists to find subgraph matches.

C. Optimization—A System-Implementation Perspective

In order to improve the query performance, we adopt two
optimization techniques. One is to cache the index structure
(VS ∗-tree except for leaf level) and the intermediate results.
The second one is to employ the multi-threading technique. In
the pruning technique, each thread corresponds to one query
vertex. In this way, we can obtain candidate lists in parallel.
Because we perform a depth-first search (DFS) strategy to join
candidate lists, we can perform DFS from different candidate
vertices in parallel. We will show the performance gains of
different optimization techniques in our demonstration.

IV. Demonstration

1) Searching Wikipedia using gStore. In this demo, we
illustrate how to use gStore to search Wikipedia. As we know,
existing Wikipedia only supports keyword search. It is difficult
to access Wikipedia based on some complex query semantics.
For example, we want to find a movie Wikipage based on the
director and the budget amount (such as the running example).
Obviously, the keyword search cannot help that. DBpedia is a
RDF repository extracting structured content (such as infobox)
from Wikipedia. Our demo provides an interface for users to
access DBpedia using SPARQL queries. Users can click the
results to the corresponding Wikipages.

Figure 7 shows the snapshot. In the upper left corner, users
can input the SPARQL query statement in the textbox. Our
demo can support SPARQL 1.0 language2 and some features
of SPARQL 1.1 language3 (such as aggregate queries). When
users click the “Query” button, gStore returns the answers to
the SPARQL in the bottom left textbox. Each row corresponds
to a result. Since URI in DBpedia is the same with URL in
Wikipedia, if users click the result, the demo will link to the
corresponding Wikipage. Also, the inforbox of the Wikipage
is also shown in right upper textbox, and the structural content
satisfying the query conditions is highlighted.

2) Building Users’ Own Application Using gStore. Further-
more, gStore provides a Java/C++ API. Users can build their
own front-end application on their own RDF repository. The
API provides the interfaces for loading RDF files, building the
index and running SPARQL queries (including the updates).
In the demonstration, we will show how to use our gStore in
users’ application software. Figure 8 shows the “Hello World”
program calling gStore API.

2http://www.w3.org/TR/rdf-sparql-query/
3http://www.w3.org/TR/sparql11-overview/

Fig. 7. Searching Wikipedia Using gStore

Fig. 8. Using gStore API

3) Demonstrating Optimization Techniques of gStore. We
demonstrate different features of gStore, such as handling
different data types in a uniform manner and the low main-
tenance overhead for RDF updates. Also, we will show the
performance gains of different optimization strategies in our
demostration.
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