
Dolha - an Efficient and Exact Data Structure for Streaming
Graphs

Fan Zhang
Peking University

Beijing, China, 100080

zhangfanau@pku.edu.cn

Lei Zou
Peking University,

Beijing, China, 100080

zoulei@pku.edu.cn

Li Zeng
Peking University

Beijing, China, 100080

li.zeng@pku.edu.cn
Xiangyang Gou
Peking University

Beijing, China, 100080

gxy1995@pku.edu.cn

ABSTRACT
A streaming graph is a graph formed by a sequence of incoming
edges with time stamps. Unlike static graphs, the streaming graph
is highly dynamic and time related. In the real world, the high
volume and velocity streaming graphs such as internet traffic data,
social network communication data and financial transfer data are
bringing challenges to the classic graph data structures. We present
a new data structure: double orthogonal list in hash table (Dolha)
which is a high speed and high memory efficiency graph structure
applicable to streaming graph. Dolha has constant time cost for
single edge and near linear space cost that we can contain billions
of edges information in memory size and process an incoming edge
in nanoseconds. Dolha also has linear time cost for neighborhood
queries, which allow it to support most algorithms in graphs with-
out extra cost. We also present a persistent structure based on Dolha
that has the ability to handle the sliding window update and time re-
lated queries.

PVLDB Reference Format:
Fan Zhang, Lei Zou, Li Zeng, Xiangyang Gou. Dolha - an Efficient and
Exact Data Structure for Streaming Graphs. PVLDB, xx(xxx): xxxx-yyyy,
2019.
DOI: https:doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
In the real world, billions of relations and communications are

created every day. A large ISP needs to deal about 109 packets of
network traffic data per hour per router [1]; 100 million users log on
Twitter with around 500 million tweets per day [2]; In worldwide,
the total number of sent/received emails are more than 200 billion
per day [3]. Those relations are coming and fading away like the
tides and mining knowledge from the highly dynamic graph data
is as difficult like capturing the certain wave of the sea. To handle
this situation, we need a graph data structure that has high memory

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. xx, No. xxx
ISSN 2150-8097.
DOI: https:doi.org/10.14778/xxxxxxx.xxxxxxx

efficiency to contain the enormous amount of data and high speed
to seize every nanosecond of the stream.

There have been several prior arts in streaming graph summa-
rization like TCM [4] and and specific queries like TRIST [5].
However, there are some complicated situations that these exist-
ing work did not cover. To illustrate our problem in this paper, we
first give some motivation examples as follows:

Use Case 1: Network traffic. The network traffic is a typical
kind of streaming graphs. Each IP address indicates one vertex and
the communication between two IPs indicates an edge. Along with
the data packets sending and receiving, the graph changes rapidly.
To monitor this network, we need to run queries on this stream-
ing graph. For example, to detect the suspects of cyber-attack, we
want to know how many data packets each IP sends or receives and
how many KBs data each edge carries. This problem is defined
as vertex query and edge query and could be solved by the graph
summarization system [4] in O(1) time cost. However, if we need
more structure-aware query answers, such as ”who are the receivers
of given IP?”, ”who are the 2-hop neighbors of this IP?” and ”how
many IPs that this IP could reach?”, the existing graph summariza-
tion techniques (such as TCM [4]) cannot provide accurate query
answers. In some applications, an exact data structure is desirable
for streaming graphs rather than probabilistic data structure.

Use Case 2: Social network. In a social network graph, a user
is considered as one vertex and the relations are the edges from
this user. One of the most common queries is triangle counting
and there are many algorithms to deal with this problem. But ex-
isting solutions are designed specifically for triangle counting [5]
and so are some continuous subgraph matching systems [6] and
circle detecting systems [7] over streaming graphs. If we want to
run different kinds of dynamic graph analysis, we have to maintain
multiple streaming systems that are costly on both space and time.
An elegant solution is one uniform system that could support most
graph analysis algorithms on streaming graphs.

Usually, an edge in streaming graph is received with a time-
stamp indicating the edge arrive time. Some applications need
to figure out historical information or time constrains based on
these time stamps, however few systems support these time-related
graph queries for historical information. Here are two examples:

Use Case 3: Financial transaction. For example, a bank has a
streaming graph system to monitor last seven days’ money trans-
actions. Each customer is recorded as one vertex, and each money
tracer is recorded as one edge. On Friday, the bank receives a no-
tice from another branch that a few suspicious transfers are made

1

ar
X

iv
:s

ub
m

it/
25

48
23

6
 [

cs
.D

S]
 2

4
Ja

n
20

19

on Tuesday between 10am and 4pm from this bank.To find these
suspicious transfers, the bank needs to run some pattern match on
the time constrained transfers. In this case, we need a streaming
graph system not only supports last snapshot-based queries but also
enable time-related queries to figure out historical information.

Use case 4: Fraud detection. The same bank from Case 3 re-
ceives another report from police. The report has a list of suspi-
cious accounts that may involves credit card fraud and the money
transfer pattern they use. The bank needs to find when such pattern
appeared in the transaction record among those accounts. Figure 1
shows an example of credit card fraud pattern. In this case, we have
the bank’s account ID, merchant account ID and a list of suspicious
accounts ID that had transactions with the merchant account. Con-
sider these IDs as vertex and the transactions as edges, we could
construct a set of query graphs. We need to locate the occurrence
time when these query graphs appear in the streaming transaction
graph, then we check inward and outward neighbors of these sus-
picious accounts near that time and find other criminal group mem-
bers.

c1 m2

a3ax

b4

t1: credit pay

t3: transfert4: transfer

t2: real payment

Middleman Account(s)

Bank

MerchantCriminal

Figure 1: Credit card fraud in transactions (Taken from [7])

Motivated by above use cases, an efficient streaming grap struc-
ture should satisfy the following requirements:

• To enable efficient graph computing, the space cost of the
data structure should be small enough to fit into main mem-
ory;

• For the enormous amount of data and the high-frequency up-
dating, the data structure must haveO(1) time cost to handle
one incoming edge processing;

• The data structure should support many kinds of graph algo-
rithms rather than designed for one specific graph algorithm;

• The data structure should also support time-related queries
for historical information.

In the literature, there exist some streaming graph data structures.
Generally speaking, they are classified into two categories: general
streaming graph data structure and a data structure designed for
some specific graph algorithms. General streaming graph struc-
tures are designed to preserve the whole structure of streaming
graphs, thus, they can support most of graph algorithms like BFS,
DFS, reachability query and subgraph matching by using neighbor
search primitives. Most of these kind of structures are based on
hash map associated with some classical graph data structures such
as adjacency matrix and adjacency list. GraphStream Project [8] is
based on adjacency list associated with hash map. The basic idea
of this structure is to map the vertex IDs into a hash table. Each cell
of vertex hash table stores the vertex ID and the incoming/outgoing
links. TCM [4] and gMatrix [9] propose to combine hash map
with adjacency matrix. Different from [8], TCM and gMatrix are
approximate data structures that inherit query errors due to hash

conflicts. There are also some other streaming graph data struc-
tures that support a single specific graph algorithm, such as Hyper-
ANF [10] for t-hop neighbor and distance query, the Single-Sink
DAG [11] for pattern matching and TRIEST [5] for triangle count-
ing.

Table 1 lists the space cost of different general streaming graph
data structure together with the time complexity to handle edge in-
sertion and edge/1-hop queries. GraphStream’s edge insertion time
is O(d), which depends on the maximum vertex degree. In many
scale-free network data, the maximum vertex degree is often very
large. Thus, GraphStream is not suitable for high speed streaming
graph. TCM and gMatrix have the square space cost that prevents
them to be used in large graphs. On the contrary, our proposed ap-
proach (called Dolha) in this paper fits all requirements for stream-
ing graphs. Generally, Dolha is the combination of the orthogonal
list with hash techniques. The orthogonal list builds two single
linked lists of the outgoing and incoming edges for each vertex and
store the first items of two list in vertex cell. On the other hand,
the hash table is commonly used for streaming data structure to
achieve amortizedO(1) time look up, such as bloom filter [12] and
count-min [13]. The combination of orthogonal list and hash table
is an promising option to achieve our goal. Based on this idea, we
present a new exact streaming graph structure: double orthogonal
list in hash table (Dolha).

Table 1: General Streaming Graph Structures

Adjacency List Adjacency Matrix Orthogonal List
+Hash GraphStream [8] TCM [4] Dolha

Space Cost O(|E| log |V |) O(|V |2) O(|E| log |E|)
Time Cost per Edge O(log d) O(1) O(1)

Edge Query O(log d) O(1) O(1)
1-hop Neighbor Query O(d) O(|V |) O(d)

Our Contributions: Table 1 shows the comparison among the
three general streaming graph structures. In this paper:

1. We design an effective data structure (Dolha) for streaming
graphs with O(|E| log |E|) space cost and O(1) time cost
for a single edge operation. Compared with existing data
structures, Dolha is more suitable in the context of high speed
straming graph data.

2. The Dolha data structure can answer many kinds of queries
over streaming graphs, among which Dolha support the query
primitive edge query inO(1) time and 1-hop neighbor queries
in O(d) time.

3. We present a variant of Dolha, Dolha persistent that supports
sliding window and time related queries in linear time cost.

4. Extensive experiments over both real and synthetic datasets
confirm the superiority of Dolha over the state-of-the-arts.

2. RELATED WORK
Among the existing studies, we categorize the structures into two

classes: general streaming graph structures and streaming graph
algorithms structures.

2.1 General Streaming Graph Structures
General streaming graph structures are designed to preserve the

data of graph stream and maintain the graph connection informa-
tion at the same time. A general streaming graph structures could
support most of graph algorithms like BFS, DFS, reachability query
and subgraph matching by using neighbor search primitives. Most

2

of these kind of structures are based on hash map associated with
basic graph data structure like adjacency matrix and adjacency list.
There are two different general streaming graph structures: exact
structure and approximation structure.

Exact Structures: Graph Stream Project [8] is an exact graph
stream processing system which is implanted by Java. Graph Stream
Project is based on adjacency list associated with hash map and it
supports most of graph algorithms. The basic idea of this structure
is to map the vertex IDs into a hash table. Each cell of vertex hash
table stores the vertex ID and the incoming / outgoing links.

Adjacency list needs O(|E| log |V |) space and O(|V | + |E|)
time for traversal. However, to locate an edge, we need to go
through the neighbor lists pf both in and out vertices which indi-
cates O(|E|) time cost in some extreme situations. Even we put
the neighbor list into a sorted list, it still costs O(log d) time (d is
the average degree of vertices) for each edge look up.

Figure 2 shows an example of adjacency list in hash table. We
use hash function H(∗) to map the 6 vertices into 6 cells vertex
hash table and each cell has 2 sorted list to store the outgoing and
incoming neighbors of the vertex. i.e., H(v2) = 0 and cell 0 stores
the vertex ID v2, the outgoing list {4 = H(v3), 5 = H(v5)} and
incoming list {2 = H(v1)}. The adjacency list stores the exact
information of the graph stream but cost O(d) for each edge inser-
tion.

Vertex Index 0 1 2 3 4 5

Vertex ID v2 v6 v1 v4 v3 v5

out in out in out in out in out in out in

4 2 2 2 0 1 1 2 3 0 1 0

5 3 1 3 2 4 2

5 3

5

Figure 2: Example of adjacency list in hash table

Approximation Structures: Another solution for the structure
of streaming graph is adjacency matrix in hash table. We could
hash the vertices into a hash table and using a pair of vertices in-
dexes as coordinates to construct an adjacency matrix. Vertex query
in hash table is O(1) time cost and so is edge look-up in the ma-
trix. From the view of time cost, adjacency matrix in hash table is
efficient but O(|V |2) space cost is a drawback. In the real world,
graphs are usually sparse and we could not afford to spend 2.5
quadrillion on a 50 million vertices graph. There is a compromise
formula that we compress the vertices into O(

√
|E|) size or even

smaller hash table to reduce the space cost up to O(|E|). But with
the high compress ratio, its only suite for a graph summarization
system, like TCM [4], gMatrix [9].

Figure 3 shows an example of adjacency matrix in hash table.
We use hash function H(∗) to map the 6 vertices into 3 cells hash
table and use the table index to build a 3×3 matrix. In the 9 cells of
the matrix, we store the weights of 11 edges. i.e., H(v1) = 1 and
H(v2) = 0, the matrix table cell (1, 0) indicates the edge −−→v1v2.
However, the cell (1, 0) also indicates the edge −−−→v1, v6 and −−−→v5, v6

since the hash collision. If we do outgoing neighbor query for v2,
the result is {v5, v1, v2, v3} and the correct answer is {v5, v3}. In
this case, if we want the exact result, the matrix size is 6× 6 which
is much larger than the edge size 11.

2.2 Specific Streaming Graph Structures

0 1 2

0 0 3 1

1 1 1 1

2 1 2 1

Vertex Index 0 1 2

Vertex Label v2 ,v6 v5 ,v1 v3 ,v4

Figure 3: Example of adjacency matrix in hash table

Unlike the general structure, there are some data structures de-
signed for specific algorithms on graph stream. For example, Hy-
perANF [10] is an approximation system for t-hop neighbor and
distance query; the Single-Sink DAG [11] is for pattern matching
on large dynamic graph; TRIST [5] is sampling system for triangle
counting in streaming graph; and there are some connectivity and
spanners structures showed in Graph stream survey [14]. These
systems could only support the designed algorithms and become
incapable or unacceptable on other graph queries.

Time constrained continuous subgraph search over streaming gra-
phs [6] is a rare and the latest research work that considers the time
as query parameter. This paper proposed an a kind of query that
requires not only the structure matching but also the time order
matching. Figure 4 shows an example of time constrained sub-
graph query. In this query, each edge of query graph has a time-
stamp constrain ε. A matching subgraph means the subgraph is an
isomorphism of query graph and the time-stamps are following the
given order.

a

b c

d

e

f
ε1 ε4 ε6

ε2 ε5

ε3

(a) query graph

ε6 ≺ ε3 ≺ ε1

ε6 ≺ ε5 ≺ ε4
(b) timing order

Figure 4: Running example query Q (Taken from [6])

3. PROBLEM DEFINITION

Definition 1 (Streaming Graph). A streaming graph G is a
directed graph formed by a continuous and time-evolving sequence
of edges {σ1, σ2, ...σx}. Each edge σi from vertex ui to vi is
arriving at time ti with weight wi, denoted as σi(−−→uivi, ti, wi),
i = 1, ..., x.

Figure 5: Streaming Graph S

Generally, there are two models of streaming graphs in the liter-
ature. One is only to care the latest snapshot structure, where the
latest snapshot is the superposition of all coming edges to the latest

3

time point. The other model records the historical information of
the streaming graphs. The two models are formally defined in Def-
initions 2 and 4, respectively. In this paper, we propose a uniform
data structure (called Dolha) to support both of them.

Definition 2 (Snapshot & Latest Snapshot Structure). An
edge −→uv may appear in G multiple times with different weights
at different time stamps. Each occurrence of −→uv is denoted as
σj(−→uv, tj , wj), j = 1, .., n. The total weight of edge −→uv at snap-
shot t is the weight sum of all occurrences before (and including)
time point t, denoted as

W t(−→uv) =
∑

tj≤t
wj .

where σ(−→uv, tj , wj) appears in streaming graph G.
For a streaming graph G, the corresponding snapshot at time

point t (denoted as Gt) is a set of edges that has positive total
weight at time t:

Gt = {(−→uv) ∈ G |W t(−→uv) > 0}.

When t is the current time point, Gt denotes the the latest snap-
shot structure of G.

(a) t = 5 (b) t = 6

(c) t = 7 (d) t = 8

(e) t = 9 (f) t = 10

Figure 6: snapshot G5 to snapshot G10 of streaming graph G

An example of streaming graph G is shown in Figure 5. Fig-
ure 6 shows the snapshots of G from t7 to t10. In Figure 6c, total
edge weight −−→v1v2 is updated from W 1(−−→v1v2) = 1 (at time t1) to
W 7(−−→v1v2) = 2 (at time t7). In Figure 6d, edge −−→v1v4 receives a
negative weight update. Since the weight of −−→v1v4 is 0 after update,
it means that it is deleted from the snapshot G8 at time t8. In Fig-
ure 6e, the deletion of edge −−→v1v2 causes the deletion of vertex v1

in G9 and v1 is added into G10 again because the new edge −−→v1v2

incoming at t10.
In some applications, we need to record the historical informa-

tion of streaming graphs, such as fraud detection example (Use
Case 4) in Section 1. Thus, we also consider the sliding window-
based model.

Definition 3 (Sliding Window). Let t1 be the starting time of
a streaming graph G and w be the window length. In every update,
the window would slide θ and θ < w. Di

w,θ(G) contains all edges
in the i-th sliding window, denoted as:

Di
w,θ(G) = {(−→uv, t, w)|

(−→uv, t, w) ∈ G, t0 + (i− 1)× θ ≤ t ≤ t0 + (i− 1)× θ + w}.

[15]

In Figure 16, the window size w = 7 and each step the window
slides θ = 3 edges. Figure 16 illustrates the first and the second
sliding window, where the left-most three edges expired in the sec-
ond window.

Figure 7: Sliding window update on streaming graph

Definition 4 (Window Based Persistent Structure). Given a
streaming graph G, the Window Based Persistent Structure (“per-
sistent structure” for short) is a graph formed by all the unexpired
edges in the current time window. Each edge is associated with the
time stamps denoting the arriving times of the edge. An edge may
have multiple time stamps due to the multiple occurrences.

Figure 8: Window based persistent structure

In a snapshot streaming graph structure, only the latest snapshot is
recorded and the historical information is overwritten. For exam-
ple, a snapshot structure only stores the snapshot G10 at last time
point t10 in Figure 6f. The update process of the streaming graph
is overwritten.

Assume that the second time window (Window 1) is the current
window. Figure 8 shows how the persistent structure stores the
streaming graph. Edge −−→v1v2 is associated with three time points
(t7, t9 and t10) that are all in the current time window. Although
edge −−→v1v2 also occurs at time t1, it is expired in this time window.
The gray edges denotes all expired edges, such as −−→v1v4 and −−→v2v3.

Definition 5 (Streaming graph query primitives). We define
4 query primitives for streaming graph G and most of the graph
algorithms such as DFS, BFS, reachability query and subgraph
matching are based on these query primitives:

1. Edge Query: Given the a pair of vertices IDs (u, v), return
the weight or time stamp of the edge −→uv. If the edge doesnt
exist, return {null}.

4

2. Vertex Query: Given the a vertex IDs u, return the incoming
or outgoing weight of u. If the vertex does not exist, return
{null}.

3. 1-hop Successor Query: Given the a vertex IDs u, return a
set of vertices that u could reach in 1-hop. If there is no such
vertex, return {null}.

4. 1-hop Precursor Query: Given the a vertex IDs u, return a
set of vertices that could reach u in 1-hop. If there is no such
vertex, return {null}.

The query primitives are slightly different in two structures. If we
query edge −−→v1v2 in snapshot structure at G10, the result is the last
updated edge information : (−−→v1v2, t10, 1). If we query edge−−→v1v2 in
persistent structure at G10 showing in Figure 8, the result is a list of
unexpired edges: (−−→v1v2, t7, 0), (−−→v1v2, t9,−1), (−−→v1v2, t10, 1). The
same difference applies to 1-hop successor query and precursor
query. If we query the successor of v1 at t10, the snapshot structure
will give the answer v2. But the persistent structure will return a
set of answers: (v2, t7), (v2, t9), (v2, t10).

Based on the persistent structure query primitives, we define a
new type of queries on streaming graph named time related query
that considers the time stamps as query parameters. In this paper,
we adopt two kinds of time related queries: time constrained pat-
tern query is to find the match subgraph in a given time period;
structure constrained time query is to find the time periods that
given subgraph appears in G.

Definition 6 (Time Constrained Pattern Query). A pattern
graph is a triple P = (V (P), E(P), L), where V (P) is a set of
vertices in P , E(P) is a set of directed edges, L is a function that
assigns a label for each vertex in V (P). Given a pattern graph P
and a time period (t, t′) and t < t′, G is a time constrained pattern
match of P if and only if there exists a bijective function F from
V (P) to V (g) such that the following conditions hold:

1. Structure Constraint (Isomorphism)

• ∀u ∈ V (P), L(u) = L(F (u)).

• −→uv ∈ E(P)⇔
−−−−−−→
F (u)F (v) ∈ E(g).

2. Time Period Constraint

• ∀−→uv ∈ E(P), t ≤ t−→uv ≤ t′. [6]

In this paper, the problem is to find all the time constrained pattern
matches of given P over Gt′ which is the snapshot of G at time t′.

(a) Pattern graph

(b) Pattern match

Figure 9: Time constrained pattern query

Figure 9 shows an example of time constrained pattern query. In
Figure 9a, a pattern graph is given which queries all the 2-hop con-
nected structures. The edges of pattern graph have a time constrain

that only the edges with the time stamp between (t4, t7) are consid-
ered as match candidates. Figure 9b is the snapshot G7 of G at time
t7. Edge−−→v1v4 and−−→v2v3 are discarded since the time stamps are out
of time constrain. Edge set {(−−→v1v2)(−−→v2v5)} is the only matching
subgraph for the given pattern on G.

Definition 7 (Structure Constrained Time Query). A query
graphQ is a sequence of directed edges {q1, q2, ..., qm} and T is a
set of time pairs {(t1, t

′
1), ..., (tn, t

′
n)}. Given a pattern graph Q,

a structure constrained time match T is that Q is the subgraph of
every snapshot of G during any time period (ti, t

′
i) in T .

∀t, ti ≤ t ≤ t
′
i, Q ∈ Gt.

Figure 10: Structure constrained time query

Figure 10 gives an example of structure constrained time query
edge set {−−→v1v2,

−−→v2v3,
−−→v3v4} is given. On G, the query graph is the

subgraph of every snapshot from G4 to G8 until deletion of−−→v1v2 on
G9. In G10, the query graph is matching again since the new arriving
−−→v1v2. The query result of Figure 10 is {(t4, t7), (t10, t10)}.

4. DOLHA - DOUBLE ORTHOGONAL LIST
IN HASH TABLE

Table 2: Notations

Notation Definition and Description
Gs / Gt Streaming graph / Snapshot at time point t
Ds / Dp Dolha snapshot / Dolha persisdent
−→uv The directed edge from vertex u to v
Doll Doulble orthogonal linked list
O Outgoing Doll
I Incoming Doll
T Time travel linked list
w Edge weight
t Edge time stamp
H(∗) Hash value of ∗
V (∗) Vertex table index of ∗
E(∗) Edge table index of ∗
E∗A() First item’s edge table index of link ∗
E∗Ω() Last item’s edge table index of link ∗
E∗Ω() Last item’s edge table index of link ∗
E∗N () Next item’s edge table index of link ∗
E∗P () Previous item’s edge table index of link ∗
∗−/+ Previous/next item of ∗

In order to handle high speed streaming graph data, we pro-
pose the data structure—called Double Orthogonal List in Hash
Table (Dolha for short)—in this paper. Essentially, Dolha is the
combination of double orthogonal linked list with hash tables. A
double orthogonal linked list (Doll for short) is a classical data
structure to store a graph, in which each edge −→uv in graph G is
both in the double linked list of all the outgoing edges from vertex
u: {−−→uvA, ...−−→uvΩ} denotes as outgoing Doll and in the double linked
list of all the incoming edges to vertex v: {−−→uAv, ...−−→uΩv} denotes as
incoming Doll. Vertex u has two pointers to the first item vA and
last item vΩ of outgoing Doll. Vertex v has two pointers to the first
item uA and last item uΩ of incoming Doll. For example, Figure
11 illustrates an example of Doll.

5

Edge

v2v5

Edge

v2v3

Edge

v3v5

Vertex

v2

Vertex

v5

Figure 11: Example of Doll

4.1 Dolha Snapshot Data Structure
Given a graph G, the Dolha structure contains of four key-value

tables. Before that, we assume that each vertex u (and edge −→uv) is
hashed to a hash value H(u) (and H(−→uv)). For example, we use
hash function H(∗) to map the vertices and edges:

• H(v1) = 1, H(v2) = 2, H(v3) = 0, H(v4) = 1, H(v5) =
3

• H(−−→v1v2) = 1, H(−−→v2v3) = 0, H(−−→v1v4) = 4, H(−−→v3v4) =
2, H(−−→v2v5) = 4, H(−−→v3v5) = 3

Vertex Hash Table: Dolha creates mv(mv ≥ |V |) size vertex
hash table and uses function H(∗) map the vertex ID u to vertex
hash table index H(u). Due to the hash collision, there could be a
list of vertices with same hash table index. In each table cell, Dolha
stores the vertex table index of the first vertex on collision list.

Table 3 is an example of vertex hash table. We use H(v1) = 1
as hash index to locate the vertex table index 0 and find the v1’s
details in vertex table cell 0. The vertex v4 has the same hash value
as v1 which means the hash collision occurs. We use hash value 1
to find the first vertex v1 on the collision list then we can find the
next item v4’s vertex table index 3 in v1’s vertex table cell.

Vertex Table V : Dolha createsmv(mv ≥ |V |) size vertex table
and one empty cell variable denoted as φV . Initially, φV = 0 . We
denote the vertex table index for new coming vertex u as V (u). Let
V (u) = φV and increase φV by 1. In each vertex table cell, Dolha
stores the vertex ID, the outgoing weight sumwO(u) and incoming
weight sum wI(u), the head and tail edge table index for outgoing
Doll , the head and tail edge table index for incoming Doll and the
vertex table index of the next vertex on collision list .

Table 4 shows the vertex table of G5 in Figure 6. Out/In w in-
dicates the outgoing and incoming weights of the vertex. O is the
edge table index of first and last items of outgoing Doll and I is
the edge table index of first and last items of incoming Doll. H
is the next vertex on the collision list. The vertices are given in-
dexes incrementally ordered by first arriving time. φV = 5 means
vertex table is full. If more vertices arrive, we can create a new ver-
tex table and begin with index 5 as the extension of existing vertex
table.

Edge Hash Table: Edge hash table: Dolha creates me(me ≥
|E|) size vertex hash table and uses function H(∗) map the outgo-
ing vertex ID u plus incoming vertex ID v of edge −→uv to edge hash
table index H(−→uv). Same as the vertex hash table, Dolha stores the
edge table index of the first edge on collision list .

In Table 5, we have the same method as vertex hash table to deal
with hash collision. −−→v1v4 has the same hash value 4 as−−→v2v5. In cell

4, we can find−−→v1v4’s edge table index 2 then find−−→v2v5’s edge table
index.

Edge Table E: Dolha creates me(me ≥ |E|) size vertex table
and one empty cell flag denoted as φE . Initially, φE = 0. We de-
note the vertex table index for new coming edge −→uv as E(−→uv). Let
E(−→uv) = φE and increase φE by 1. In each edge table cell, Dolha
stores the vertex table indexes V (u) and V (v), the weight w(−→uv),
the time stamp t(−→uv), the previous and next edge table index for
outgoing Doll , the previous and next edge table index for incom-
ing Doll and the edge table index of the next edge on collision list
.

Table 6 shows the edge table of G5 in Figure 6. w is the weight
and t is the time stamp. Vertex index indicates the outgoing and
incoming vertices of the edge. O is the edge table index of next
and previous items of outgoing Doll and I is the edge table index
of next and previous items of incoming Doll. H is the next edge on
the collision list.

Table 3: Vertex hash table of G5

Hash index 0 1 2 3 4
Vertex table index 2 0 1 4 /

Table 4: Vertex table of G5

Index 0 1 2 3 4
Vertex ID v1 v2 v3 v4 v5

Out/In w 2 0 2 1 1 1 0 2 0 1
O 0 2 1 4 3 3 / / / /
I / / 0 0 1 1 2 3 4 4
H 3 / / / /

φV = 5

Table 5: Edge hash table of G5

Hash index 0 1 2 3 4 5
Edge table index 1 0 3 / 2 /

Table 6: Edge table of G5

Index 0 1 2 3 4 5
w 1 1 1 1 1 /
t 1 2 3 4 5 /

Vertex index 0 1 1 2 0 3 2 3 1 4 / /
O / 2 / 4 0 / / / 1 / / /
I / / / / / 3 2 / / / / /
H / / 4 / / /

φE = 5

4.2 Dolha Snapshot Construction
When an edge (−→uv; t;w) comes:

• Map the edge −→uv into edge hash table cell H(−→uv).

• If H(−→uv) is empty, −→uv does not exist in Ds. If H(−→uv) is not
empty, traverse the collision list of cell H(−→uv) in edge hash
table. If find −→uv, −→uv exists; if not, −→uv does not exist.

There are two possible operations:
If −→uv does not exist in Ds:

• Add −→uv into into edge table cell E(−→uv) and the collision list
of H(−→uv).

6

• Map the vertices u,v into vertex hash table H(u),H(v).

• If H(u) is empty, add ID u into vertex table cell V (u). If
H(u) is not empty, traverse the collision list of cell H(u) in
vertex hash table. If find match ID, then we update vertex
table V (u) of u; if not, add u into vertex table cell V (u) and
collision list of H(u).

• Do the same operation for v.

• Add−→uv into the end of outgoing Doll of u and incoming Doll
of v.

If −→uv exists in Ds:

• Set t(−→uv) = t and w(−→uv) = w(−→uv) + w.

• Delete −→uv from outgoing Doll of u and incoming Doll of v

• If −→uv has positive weight after this update:

• Add −→uv into the end of outgoing and incoming Dolls.

• if −→uv has zero or negative weight after this update:

• Delete −→uv from edge table.

• If there is not any item in both Doll of u or v, delete u or v.

For example, at time 6, edge−−→v3v5 is received. We useH(v3v5) =
3 to get the edge hash table index and find edge−−→v3v5 is a new edge.
We write the empty cell index 5 of edge table into hash table and
check the two vertices by using vertex hash table. We locate the
V (2) for v3 and V (4) for v5 on vertex table and get the last item of
outgoing Doll E(3) and the last item of incoming Doll E(4). We
update the both last items of outgoing and incoming Doll to 5 then
move to edge table. We update the next item of outgoing Doll to 5
in E(3) and update the next item of incoming Doll to 5 in E(4).
Finally, we write w, t, (2, 4), (3, /) and (4, /) into E(5).

At time 7, edge −−→v1v2 comes and it is already on the edge table.
We first update the w and t at E(0) and remove −−→v1v2 from both of
the Dolls then add it to the end of Dolls.

At time 8, edge −−→v1v4 carries negative weight and w is 0 after
the update. We move E(2) from the outgoing and incoming doll
and update the associated indexes, then we empty the cell 2 of edge
table and put the index 2 into empty edge cell list. At time 9, edge
−−→v1v2 is deleted and v1 has no out or in edges. We empty cell 0 of
vertex table and put the index 0 into empty vertex cell list.

4.3 Time and Space Cost

4.3.1 Time Cost
Algorithm 1 shows how Dolha process one incoming edge.
From line 3 to 14, we maintain the edge hash table to check the

existence of incoming edge −→uv. According to [16], if we hash n
items into a hash table of size n, the expected maximum list length
isO(logn/ log log n). In the experiment, more than 99% collision
list is less than logn/ log log n, more than 90% collision list is
shorter than 5. Hash table could achieve amortized O(1) time cost
for 1 item insert, delete and update which is much faster than sorted
table. This step costs O(1) time.

If −→uv is a new edge, from line 16 to 22, we maintain the vertex
hash table to check the existence of two vertices u and v. In this
step, we do two hash table look up and it costs O(1) time. From
line 23 to 29, we write −→uv into edge table then add it into the end
of outgoing and incoming Dolls. The time complexity of this step
is same as insertion on double linked list which is O(1).

Algorithm 1: Dolha snapshot edge processing
Input: Streaming graph G
Output: Dolha snapshot structure of G

1 for each incoming edge (−→uv; t;w) of G do
2 Check existence of −→uv:
3 Map −→uv into H(−→uv).
4 if H(−→uv) is null then
5 −→uv does not exist
6 else
7 Traverse the collision list from EHA (−→uv).
8 if reach null and no match for −→uv then
9 −→uv does not exist

10 else
11 −→uv exists
12 if −→uv does not exist then
13 Update collision list of −→uv:
14 if H(−→uv) is empty then
15 Let EHA (−→uv) = E(−→uv)
16 else
17 Let EHN (−→uv−) = E(−→uv)
18 Check existence of u:
19 Map the vertices u into H(u)
20 if H(u) is null then
21 Add u into vertex table V (u) and let V HA (u) = V (u)

22 else
23 Traverse the collision list from EHA (u).
24 if reach null and no match for u then
25 Add u into vertex table V (u) and let

V HN (u−) = V (u)

26 Do the same operation for v same as u
27 Add −→uv into edge table E(−→uv)
28 Add −→uv into outgoing Doll:
29 if both EOA (u) and EOΩ (u) are null then
30 Let EOA (u) = E(−→uv) and EOΩ (u) = E(−→uv)
31 if neither EOA (u) nor EOΩ (u) is null then
32 Let EO(−→uv−) = EOΩ (u) and EON (−→uv−) = E(−→uv) and

EOP (−→uv) = EO(−→uv−) and EOΩ (u) = E(−→uv)
33 Add −→uv into incoming Doll same as outgoing Doll
34 if −→uv exists then
35 Let w(−→uv)+ = w and t(−→uv) = t

36 Delete −→uv from outgoing Doll:
37 if −→uv is the first item of outgoing Doll then
38 Let EOA (−→uv) = EON (−→uv) and EOP (−→uv+) = null

39 if −→uv is the last item of outgoing Doll then
40 Let EOΩ (−→uv) = EOP (−→uv) and EON (−→uv−) = null

41 else
42 Let EON (−→uv−) = EON (−→uv) and EOP (−→uv+) = EOP (−→uv)
43 Delete −→uv from incoming Doll same as outgoing Doll
44 if w(−→uv) > 0 then
45 Add E(−→uv) into the end of outgoing Doll and incoming

Doll
46 else
47 Delete −→uv
48 Delete E(−→uv) and flag E(−→uv) as empty cell
49 if there is no item on outgoing Doll or incoming Doll of

u then
50 Delete V (u) and flag V (u) as empty cell
51 if there is no item on outgoing Doll or incoming Doll of

v then
52 Delete V (v) and flag V (v) as empty cell

If −→uv exists, from line 31 to 38, we update the weight and time
stamp of −→uv then delete it from outgoing and incoming Dolls. This
step costs the same time as deletion on double linked list which is
also O(1). From line 39 to 40, if updated weight is positive, we
add the −→uv to the end of both two Dolls which costs O(1). If the

7

updated weight is zero or negative, we delete −→uv completely then
delete u and v if they have 0 in and out degrees. Line 41 to 46
shows the deletions and this step also costs O(1).

Overall, for each incoming edge processing, the time complexity
of Dolha is O(1).

4.3.2 Space Cost
Dolha snapshot structure needs one |V | cells vertex hash table,

one |V | cells vertex table, one |E| cells edge hash table and one
|E| cells edge table. Dolha also needs a log |V | bits integer for one
vertex index and log |E| bits for one edge index.

Vertex hash table: Each cell only stores one vertex index. It
costs log |V | × |V | space.

Edge hash table: Each cell only stores one edge index. It costs
log |E| × |E| space.

Vertex table: Each cell stores vertex ID, in and out weights one
log |V | bits vertex index for collision list, four log |E| bits edge
indexes for Dolls. It costs (log |V |+ 4× log |E|)× |V | space.

Edge table: Each cell stores weight, time stamp, one log |E|
bits edge index for collision list, two log |V | bits vertex index for
in and out vertices, four log |E| bits edge indexes for Dolls. It costs
(2× log |V |+ 5× log |E|)× |E| space.

In total, Dolha needs (2× log |V |+ 4× log |E|)× |V |+ (2×
log |V | + 5 × log |E|) × |E| bits for the data structure. Since
usually |V | � |E|, the space cost of Dolha snapshot structure is
O(|E| log |E|).

5. DOLHA PERSISTENT STRUCTURE

5.1 Dolha Persistent Data Structure
Using Dolha, We could construct a persistent structure Dp and

Dp contains any snapshot’s information of G. Dp has the same
structure as Ds except the time travel list.

Definition 8 (Time Travel List). An edge −→uv may appear in
streaming graph S multiple times with different time stamp. Time
travel list T is a single linked list that links all the edges −→uv which
share same outgoing and incoming vertices. In T , each edge has
an index points to its previous appearance in the stream.

Dp also has four index-value tables. The vertex hash table, ver-
tex table and edge hash table are same as Ds. In each cell of edge
table, Dp has a extra value which indicates the previous item on
the time travel list.

5.2 Dolha Persistent Construction

5.2.1 Incoming Edge Processing
When an edge σ(−→uv; t;w) comes:

• Check the existence of −→uv same as Dolha snapshot.

If −→uv does not exist in Dp:

• The operation is exact same as Dolha snapshot.

If −→uv exists in Dp:

• Use edge hash table to find the existing edge table index
E(σ′) of −→uv.

• Insert edge σ as new edge into edge table and set the time
travel list index as E(σ′).

• Update the edge table index of−→uv on edge hash collision list.

Algorithm 2: Dolha persistent edge processing
Input: Streaming graph G
Output: Dolha persistent structure of G

1 for each incoming edge σ(−→uv; t;w) of G do
2 Check existence of −→uv:
3 if −→uv does not exist then
4 Insert −→uv
5 if −→uv exists in cell E(σ′) then
6 Insert E(σ) as new edge and let w(σ) = w(σ) + w(σ′)

7 Let ETP (σ) = E(σ′)
8 if value of H(−→uv) in edge hash table is null then
9 Let EHA (−→uv) = E(σ)

10 else
11 Let EHN (−→uv−) = E(σ)

Table 7: Edge hash table of Window 0

Hash index 0 1 2 3 4 5 6 7 8 9
Edge table Index 1 / 3 / 5 4 / 2 6 /

Table 8: Edge table of Window 0

Index 0 1 2 3 4 5 6 7 8 9
w 1 1 1 1 1 1 2 / / /
t 1 2 3 4 5 6 7 / / /
V 0 1 1 2 0 3 2 3 1 4 2 4 0 1 / / / / / /
O / 2 / 4 0 6 / 5 1 / 3 / 2 7 / / / / / /
I / / / 6 / 3 2 7 / 5 4 / 1 8 / / / / / /
H / / / / / / / / / /
T / / / / / / 0 / / /

Table 9: Edge table of Window 1

Index 0 1 2 3 4 5 6 7 8 9
w / / / 1 1 1 1 -1 0 /
t / / / 4 5 6 7 9 10 /
V / / / / / / 2 3 1 4 2 4 0 1 0 1 0 1 / /
O / / / / / / / 5 / / 3 / / 7 6 8 7 / / /
I / / / / / / / / / 5 4 / / 7 6 8 7 / / /
H / / / / / / / / / /
T / / / / / / / 6 7 /

Table 7 and 8 show the Dolha persistent’s edge hash table and
edge table of G in Window 0. The vertex hash table and vertex
table of Dolha persistent are similar like Dolha snapshot and so is
the new edge coming. But for edge −−→v1v2 update at time 6, we add
the update as new edge into E(6) and update the edge hash table to
latest update. By using the time travel list, all the updates of −−→v1v2

are linked.

5.2.2 Sliding Window Update
When the window slides the ith step, we have the start time ts =

t0 + (i − 2) × θ and end time te = t0 + (i − 1) × θ of expired
edges which need to delete from edge table. Since the edge table is
naturally ordered by time, we can find the last expired edge denote
as E(σe) at te in O(logS) time. By using edge hash table, we
can find the latest update of E(σΩ) and traversal back by the time
travel list. For each E(σn)(e < n ≤ Ω) on time travel list, let
wn = wn − we. If each wn ≤ 0, delete all the E(σn). Then
delete each E(σm)(0 < m ≤ e) on time travel list. Do the same
operation for the edges from te to ts. For every deleted edge, if it
is the first or last item of Doll, update the associated cell in vertex
table and set the index to null. If all the Doll indexes are null in
that vertex cell, delete the vertex and flag the cell as empty.

As shown in Figure 16, when window slides from 0 to 1 means
the edges before t4 will expire. First, we can binary search the
edge table to locate the first unexpired edge index 3 since the table
is sorted by time stamp. Then we start to delete the expired edges

8

from cell 3. We use the hash table to check if there are unexpired
updates for the expired edges. For example, −−→v1v2 has unexpired
update at time 7, so we minus the expired weight at cell 6.

Table 9 shows the edge table of Dolha persistent at Window 1.
The first 3 expired edges have been deleted. At time 8, −−→v1v4 with
negative weight arrives, but there is no positive −−→v1v4 in this win-
dow. In this case, we won’t save −−→v1v4. At time 9 and 10, −−→v1v2 has
negative or zero weights, but −−→v1v4 has positive weight at time 7, so
we keep the record and link them with time travel linked list.

Space Recycle: Due to the chronological ordered edge table, the
expired edges are always continuous and in the head of the unex-
pired edges. We could always recycle the space from expired edges
which means we won’t need infinite space to save the continuous
streaming but only need the maximum number of edges in each
window. For instance, in table 9, we can re-use the cell from 0 to
1 for next window update and we have enough space as long as no
more than 9 edges in 1 window.

5.3 Time and Space Cost
The time cost of Dolha persistent is hash table cost, Doll cost

and time travel list cost. For each incoming edge, the hash table
cost and Doll cost are O(1) as we discussed in Dolha snapshot and
the time travel list cost is also O(1) same as insertion on single
linked list. Overall, the time cost for one edge processing is O(1).

To store all the information of streaming S, Dolha persistent
structure needs one |V | cells vertex hash table, one |V | cells vertex
table, one |S| cells edge hash table and one |S| cells edge table. In
total, Dolha needs (2×log |V |+4×log |S|)×|V |+(2×log |V |+
5 × log |S|) × |S| bits plus log |S| × |S| for time travel list. The
space cost of Dolha persistent structure is O(|S| log |S|).

6. ALGORITHMS ON DOLHA
In this section, we discuss how to perform the graph algorithms

on both Dolha snapshot structure and persistent structure.

6.1 Algorithms on Dolha Snapshot

6.1.1 Query Primitives
Dolha snapshot structure supports all the 4 graph query primi-

tives.
Edge Query: Given a pair of vertices IDs (u, v), to query the

weight and time stamp of edge (−→uv) is same as the existence check-
ing of (−→uv) in insertion operation. By using edge hash table, we can
find E(−→uv) on edge table and return w and t. As we proved before,
the time cost of hash table checking is amortized O(1).

Vertex Query: Similar as edge query, by using vertex hash table,
we can locate given vertex u on vertex table inO(1) time and return
the query result.

1-hop Successor Query and 1-hop Precursor Query: Given a
vertex ID u, Dolha first perform vertex query to find V (u) in O(1)
time. Then we have the head edge index EOA (u) of outgoing Doll.
From E(σ) = EOA (u), we can use EON (σ) to acquire all edges on
outgoing Doll iteratively and add the incoming vertex indexes of
these edges into set {V (v)}. The IDs of {V (v)} can be found in
vertex table and returned as the results of 1-hop successor query.
The 1-hop precursor query is similar as successor query but use
incoming Doll instead. The time cost of Doll iteration depends on
the outgoing or incoming degree d of given u. The total time cost
of 1-hop successor query or 1-hop precursor query is O(d).

Chronological Doll: In Dolha structure, we maintain the Doll in
chronological order. The result list of 1-hop successor query or 1-
hop precursor query is sorted by the time stamps. The chronologi-
cal Doll could reduce the search space in some time related queries.

For example, in Figure 4, we have a candidate edge (−→uv; t) that
matches (

−→
dc; ε4) and look for the candidate edges of (−→ce; ε5). Since

the timing order constrain ε5 ≺ ε4, we first check the time stamp
of first edge on v’s outgoing Doll in O(1) time. If the time stamp
is equal or larger than t, it means there is no match for (−→ce; ε5). If
the time stamp is less than t, we can search from the first edge on
v’s outgoing doll until equal or larger the time stamp than t.

6.1.2 Directed Triangle Finding
By using the 4 graph query primitives, most graph algorithms

could run on Dolha. The 1-hop successor query and 1-hop precur-
sor query associated with edge query could support all the BFS or
DFS based algorithms like reachability query, tree parsing, shortest
path query, subgraph matching and triangle finding. For example,
the triangle finding is a common graph query on streaming graph.

To query the directed triangle on Dolha, we can use the edge iter-
ator method. During the Dolha snapshot construction, we can add
one out degree counter and one in degree counter for each vertex.
For each edge (−→uv) incoming edge, get the minimal candidate set
{j} between v’s successor set and u’s precursor set. Then check
each j in set {j} that if there is (

−→
ju) or (

−→
vj) existing in edge ta-

ble by using edge query. The set of all existing (−→uv,−→vj,−→ju) is
the query result.According to [17], the time complexity of triangle
finding on whole graph is O(

∑
−→uv∈E min{din(u), dout(v)}), so

the time cost is O(min{din(u), dout(v)}) for each edge update.

Algorithm 3: Continuous directed triangle finding on Dolha
snapshot

Input: Dolha snapshot structure of G with out and in degree counter
Input: Streaming Graph G
Output: Directed triangles in G

1 for each new coming edge −→uv of G do
2 if in degree of u ≤ out degree of v then
3 for each vertex j in u’s precursor set do
4 if

−→
vj exsits in edge table then

5 Put (−→uv,−→ju,−→vj) into result set
6 else
7 for each vertex j in v’s successor set do
8 if

−→
ju exsits in edge table then

9 Put (−→uv,−→ju,−→vj) into result set

6.2 Algorithms on Dolha Persistent

6.2.1 Query Primitives
Dolha persistent structure also supports all the 4 graph query

primitives both on the latest snapshot and persistent perspective of
G:

Edge Query: Given a pair of vertices IDs (u, v), the latest up-
date of edge−→uv could be found by using edge hash table. Once find
the latest update of edge−→uv, we could use time travel list to retrieve
all the updates of −→uv in current window.

Vertex Query: The vertex query on Dolha persistent is exactly
same as snapshot structure.

1-hop Successor Query and 1-hop Precursor Query: Given a
vertex ID u, the outgoing or incoming Doll of u may contain du-
plicates of edges. To query the successor of u on Dolha persistent,
it’s better from the last item of outgoing Doll EOΩ (u) which is def-
initely the latest outgoing edge from u. Let E(−→uv) = EOΩ (u), we
add v to the result set and use the time travel link of −→uv to flag
all the previous update records of −→uv. Then we traversal the out-
going doll and do the same operation for each unflagged edge as

9

−→uv. 1-hop precursor query is same as successor query but using the
incoming Doll. The two lists are sorted by time naturally.

6.2.2 Time Related Queries
Time Constrained Pattern Query: Given time period (t, t′),

the essential part of time constrained pattern query is to find the all
the edges with time stamp (t ≤ t−→uv ≤ t′) on snapshot G′t. The
chronological edge table allows us to locate the first edge E(σt) at
time t and the last edgeE(σ′t) at time t′ inO(logS) time. Then we
can run Algorithm 4 to construct the adjacency list of the candidate
subgraph of time constrained pattern query. We also could con-
struct a Dolha snapshot structure to store the candidate subgraph
by using Algorithm 5. The time cost of candidate subgraph con-
struction is O(logS + S′) and the space cost is O(S′) (S′ is the
incoming edge number of (t, t′)). We can run any isomorphism al-
gorithm on the candidate subgraph structure to get the final query
result.

Algorithm 4: Adjacency list construction for candidate sub-
graph of time constrained pattern query

Input: edges between σt and σ′t in edge table
Input: Dolha persistent structure of G
Output: Adjacency list of candidate subgraph

1 for each edge σ(−→uv; t;w) from E(σ′t) to E(σt) do
2 if flag! = 3 then
3 for each edge on the time travel list after σ do
4 Let flag = 3
5 if flag == 2 or flag == 0 then
6 Put u into candidate vertex set
7 for each edge σO on outgoing Doll of u do
8 if flag! = 3 then
9 for each edge on the time travel list after σO do

10 Let flag = 3
11 Let flag+ = 1
12 Put the incoming vertex of σO into the

outgoing neighbor list of u
13 if flag == 1 or flag == 0 then
14 Put v into candidate vertex set
15 for each edge σI on incoming Doll of v do
16 if flag! = 3 then
17 for each edge on the time travel list after σI do
18 Let flag = 3
19 Let flag+ = 2
20 Put the outgoing vertex of σI into the incoming

neighbor list of v

Algorithm 5: Dolha snapshot construction for candidate sub-
graph of time constrained pattern query

Input: edges between σt and σ′t in edge table
Input: Dolha persistent structure of G
Output: Dolha snapshot of candidate subgraph

1 Construct a Dolha snapshot structure D′t with vertex and edge size
|E(σ′t)− E(σt)| for each edge σ(−→uv; t;w) from E(σ′t) to E(σt)
do

2 if flag! = 1 then
3 for each edge on the time travel list after σ do
4 Let flag = 1
5 Insert σ into D′t

Structure Constrained Time Query: Given a sequence of di-
rected edges Q{q1, q2, ..., qm}, for each edge qn in Q, we can
use edge hash table to locate the latest update E(qn) in G and
use time travel list to find the time period set Tn that edge qn ap-
pears. Then we join all the time period sets to find result time
period set. The Algorithm 6 shows that the time complexity is

O(m × p × log(m × p)) (p is the average number of one edge
appearance in S).

Algorithm 6: Structure constrained time query
Input: a sequence of directed query edges Q{q1, q2, ..., qm}
Input: Dolha persistent structure of G
Output: Time period set T that match the query structure

1 Let te = null and ts = null
2 Let chronological order set Tc = φ
3 for each edge qn in Q do
4 Use edge hash table to find the latest update E(qn)

5 for each edge qtn on time travel list of qn from E(qn) do
6 if wtn > 0 then
7 Let ts = ttn
8 if te == null then
9 Let te = ttn

10 if wtn ≤ 0 then
11 if ts! = null then
12 Put ts flag as s and te flag as e into Tc
13 Let te = null and ts = null

14 for each item ce that flagged as e in Tc do
15 if there are m continuous s items on the left of c then
16 Let cs = the closest left s item
17 Put (cs, ce) into T

7. EXPERIMENTAL EVALUATION

7.1 Experiment Setup
We evaluate Dolha snapshot and Dolha persistent structure sep-

arately.
In Dolha snapshot experiment, we compare Dolha snapshot with

adjacency matrix in hash table and adjacency list in hash table.
Since TCM is based on adjacency matrix in hash table and the java
project GraphStream is based on adjacency list in hash table, we
believe the comparison to these two general GraphStream struc-
tures could reflect the performance of Dolha properly. For the three
structures, we first compare the average operation time cost and
space cost and then compare the speed of query primitives.

We use the same hash function (MurmurHash) for all the struc-
tures and build the same vertex hash table and vertex table for all
three structures so they all share the same vertex operation time
cost and accuracy. Because the full adjacency matrix is too large,
we compress the matrix in certain ratios that costs similar space as
Dolha. That makes TCM become an approximation structure and
we take account of the relative error.

In Dolha persistent experiment, since there is no similar system
for comparison, we build an adjacency list in hash table with an
extra time line which stores all the edge update information. We
use the adjacency list as baseline method to compare with Dolha
persistent on the speed of sliding window update, query primitives
and time related queries.

7.1.1 Dataset

1. DBLP [18]: DBLP dataset contains 1, 482, 029 unique au-
thors and 10, 615, 809 time-stamped coauthorship edges be-
tween authors (about 6 million unique edges). Its a directed
graph and we assign each streaming edge with weight 1.

2. GTGraph [19]: We use the graph generator toll GTGraph to
generate a directed graph. We use the R-MAT model gener-
ate a large network with power-law degree distributions and
add weight 1 to for each edge and use the system clock to

10

get the time-stamp. The generated graph contains 30 million
vertices and 1 billion stream edges.

3. Twitter [20]: We use the Twitter link structure data with 56
million vertices and 2 billion edges as a directed streaming
graph and assign weight 1 to each edge.

4. CAIDA [21]: CAIDA Internet Anonymized Traces 2015 Data-
set obtained from www.caida.org. The network data con-
tains 445, 440, 480 communication records (edges) (about
100 million unique edges) concerning 2, 601, 005 different
IP addresses (vertices).

We use 4 datasets for Dolha snapshot experiment: The DBLP, GT-
Graph and Twitter are used for Dolha snapshot experiments and
DBLP and CAIDA are used for Dolha persistent experiments.

7.1.2 Environment
All experiments are performed on a server with dual 8-core CPUs

(Intel Xeon CPU E5-2640 v3 @ 2.60GHz) and 128 GB DRAM
memory, running CentOS. All the data structures are implemented
in C++.

7.2 Dolha Snapshot Experimental Results

7.2.1 Construction
Firstly, we compare the average processing time cost of stream

graph on three structures and the space cost of them. In real world
scenario, the insertion, deletion and update operations are usually
coming randomly and the average stream processing speed is the
key performance indicator of the system and all three operations
time costs on Dolha are O(1). So we load the datasets 2 times as
insertion and update and set the weight to −3 for last loading as
deletion. Then we calculate the average time as the stream process-
ing time cost and present it in the form of operations per second.
During the data loading, we record the actual memory consuming
when the edges are fully loaded. The results are showing in Figure
18.

(a) Time Efficiency (b) Space Efficiency

Figure 12: Time and space cost for 3 streaming graph structure

In DBLP dataset, Dolha processing speed reaches 1, 837, 357
operations per second which almost same as TCMs 2, 192, 715 op-
erations per second and faster than GraphStreams 1, 266, 815 op-
erations per second. Since the preset compress ratio, the memory
cost of TCM is 690MB which is similar to Dolhas 563MB. The
GraphStream costs 833MB which is worse than Dolha. In GT-
Graph dataset, the performance remains the same. The TCM is the
fastest structure with 2, 014, 768 operations per second and Dolha
is not far behind with 1, 552, 536 operations per second. The speed
of GraphStream drops significantly to 85, 441 operations per sec-
ond and the space cost reaches 96GB which is way higher than Dol-
has 45GB and TCMs 47GB. In Twitter dataset, the GraphStream

runs out memory since the enormous space cost of sorted list main-
tenance. The performances of Dolha and TCM are steady. Dolha
costs 86GB memory and reaches 1, 550, 197 operations per second
while the TCM costs 88GB and reaches 2, 336, 785 operations per
second. The time cost results show that Dolha is slightly slower
on stream processing speed than the TCM but significantly faster
than the GraphStream. Since the TCM is an approximation struc-
ture and Dolha is an exact structure, the latency is acceptable. The
space cost results show that Dolha could process 2 billion edges
stream on less than 90GB memory.

7.2.2 Query Primitives
In this part, we compare the query primitives speed on the three

systems. The vertex query, the edge query, 1-hop successor query
and 1-hop precursor query are taken into account. The time-related
query and sliding window update are not supported by the other two
structures and the time costs are depended on the given parameters,
so we have not run experiment on these two queries.

Vertex Query: The three structures share the same vertex hash
table and vertex table, so the vertex query speeds are same. We run
25 random vertex queries which cost 14, 146 nanoseconds in total.
It means the average vertex query is 566 nanoseconds per query.

Edge Query: We run 50 random edge queries for three struc-
tures on each dataset. The results show that speed of edge query on
Dolha is similar as on TCM with 0 relative error and much faster
than GraphStream.

(a) Edge Query Time Cost (b) Edge Query Average Preci-
sion

Figure 13: Time cost and average precision for edge query

1-hop Successor Query and 1-hop Precursor Query: We ran-
domly choose 25 vertices and run 1-hop successor query and 1-
hop precursor query for three structures on each dataset. Since the
query speed depends on the size of results set, we calculate the
average query speed as nanoseconds per result. The TCM has al-
most 0 average precision on these queries and slowest query speed.
Among the threes structures, Dolha has the best performance with
fast query speed and 100% precision.

Compare to the GraphStream, Dolha has great advantages on the
average stream processing time cost, space cost, edge query speed,
1-hop successor query and 1-hop precursor query speed. Dolha
is slightly slower than the TCM with similar space cost on average
stream processing time cost, space cost, edge query speed but faster
on 1-hop successor query and 1-hop precursor query. On the other
hand, the Dolha is an exact structure and the TCM is an approxi-
mation structure.

Directed Triangle Finding: We run continuous directed triangle
finding algorithm on DBLP and GTGraph 1 billion date set using
Dolha snapshot and GraphStream. For DBLP dataset, Dolha could
process 759,866 edge updates per-second and GraphStream only
could process 238,095 edge updates per-second. For GTGraph 1

11

(a) 1-Hop Successor Query Time
Cost

(b) 1-Hop Successor Query Aver-
age Precision

Figure 14: Time cost and average precision for 1-hop successor
query

(a) 1-Hop Precursor Query Time
Cost

(b) 1-Hop Precursor Query Aver-
age Precision

Figure 15: Time cost and average precision for 1-hop precursor
query

billion date set, Dolha could deal 129,853 throughput edges per-
second but GraphStream could only deal less than 10,000 through-
put edges per-second.

7.3 Dolha Persistent Experimental Results

7.3.1 Construction and Sliding Window Update
We set window length = 1

10
|S|, slide length = 1

5
window length

as W1 and slide length = 1
50

window length as W2. Then we load
the DBLP and CAIDA dataset with and without sliding window
update. Figure 16 shows the through-puts of Dolha persistent and
adjacency list plus time-line with and without sliding window up-
date.

On DBLP date set, Dolha persistent reaches 2, 008, 420 edges
update per second without sliding window update, 1, 979, 889 edges
update per second in W1 and 1, 961, 238 edges update per sec-
ond in W2. The adjacency list plus time-line only can process
1, 120, 269 edges update per second without sliding window up-
date, 893, 795 edges update per second in W1 and 583, 367 edges
update per second in W2.

On CAIDA dataset, Dolha persistent reaches 3, 969, 514 edges
update per second without sliding window update, 3, 917, 037 edges
update per second in W1 and 3, 425, 009 edges update per sec-
ond in W2. The results are way better than the adjacency list plus
time-line’s speeds: 761, 834 edges update per second without slid-
ing window update, 676, 077 edges update per second in W1 and
472, 953 edges update per second in W2.

The construction time costs in different window setting on Dolha
persistent are similar which means the the size of slide length are
insignificant to the edge processing. The outstanding high speed is

caused by the high duplicated edge rate on CAIDA dataset. We set
the edge hash table same size as edge table, but the unique edge
number is only 1

4
of total stream edge number which reduces the

hash collision significantly. And when we process the duplicate
edge update, we do not need to check the vertices by using vertex
hash table.

Figure 16: Edge throughput without and with time window update

7.3.2 Query Primitives
The query primitives of DBLP on Dolha persistent are exact the

same as Dolha snapshot, we only compare the CAIDA with adja-
cency list plus time-line.

Vertex Query: The two structures use the same vertex hash table
and vertex table. We run 25 random vertex queries and the average
vertex query is 605 nanoseconds per query.

Edge Query: We run 50 random edge queries on both data struc-
tures. The result shows that Dolha persistent is 5 times faster than
adjacency list plus time-line.

1-hop Successor Query and 1-hop Precursor Query: We ran-
domly choose 25 vertices and run 1-hop successor query and 1-hop
precursor query on two structures. Dolha persistent is slighly faster
than adjacency list plus time-line.

Figure 17: Query primitives on CAIDA

7.3.3 Time Related Queries
Time Constrained Pattern Query: For time constrained pat-

tern query, we randomly choose 3 pairs of time-stamps as time
constrain and extract the eligible edges to form a candidate sub-
graph. Figure 18a shows the average candidate subgraph forming
speeds of Dolha persistent and adjacency list plus time-line. In
DBLP, we reach 457 nanoseconds per edge to extract the candidate
subgraph into a Dolha snapshot and the adjacency list plus time-
line can only construct 789 nanoseconds per edge into an adjacency
list. In CAIDA, the speed reaches 146 nanoseconds per edge and

12

the adjacency list plus time-line can only process 709 nanoseconds
per edge.

Structure Constrained Time Query: To compare structure con-
strained time query, we randomly choose 5 query edge sets and
each set has 5 edges. The average query time of Dolha persistent is
49, 378 nanoseconds per query on DBLP and 1, 623, 200 nanosec-
onds per query on CAIDA. The average query time of adjacency
list plus time-line is 486, 576 nanoseconds per query on DBLP and
17, 312, 871 nanoseconds per query on CAIDA.

(a) Time Constrained Query (b) Structure Constrained Time
Query

Figure 18: Time related query

8. CONCLUSIONS
We have proposed an exact streaming graph structure Dolha which

could maintain high speed and high volume streaming graph in
linear time cost and near linear space cost. We have shown that
Dolha is a general propose structure that could support the query
primitives which are the cornerstone of common graph algorithms.
We also present the Dolha persistent structure which could support
sliding window update and time related queries. The experiment re-
sults have proved that Dolha has better performance than the other
streaming graph structures.

13

9. ADDITIONAL AUTHORS

10. REFERENCES
[1] S. Guha and M. Andrew, “Graph synopses, sketches, and

streams: a survey,” PVLDB, vol. 5, no. 12, pp. 2030–2031,
2012.

[2] “Tweet statistics,” http://expandedramblings.com/index.php/
march-2013-by-the-numbers-a-few-amazingtwitter-stats/
10/.

[3] “Email statistics report, 2015-2019,”
https://radicati.com/wp/wp-content/uploads/2015/02/
Email-Statistics-Report-2015-2019-Executive-Summary.
pdf.

[4] N. Tang, Q. Chen, and P. Mitra, “Graph stream
summarization: From big bang to big crunch,” SIGMOD, pp.
1481–1496, 2016.

[5] L. De Stefani, A. Epasto, M. Riondato, and E. Upfal,
“TRIÈST: Counting local and global triangles in
fully-dynamic streams with fixed memory size,” in
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser.
KDD ’16. ACM, 2016.

[6] Y. Li, L. Zou, M. T. Ozsu, and D. Zhao, “Time constrained
continuous subgraph search over streaming graphs,”
https://arxiv.org/pdf/1801.09240.pdf, 2018.

[7] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and
J. Zhou, “Real-time constrained cycle detection in large
dynamic graphs,” Proceedings of the VLDB Endowment,
vol. 11, no. 12, 2018.

[8] Y. Pigne, A. Dutot, F. Guinand, and D. Olivier,
“Graphstream: A tool for bridging the gap between complex
systems and dynamic graphs,” EPNACS, 2007.

[9] A. Khan and C. C. Aggarwal, “Query-friendly compression
of graph streams,” IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pp.
130–137, 2016.

[10] P. Boldi, M. Rosa, and S. Vigna, “Hyperanf: approximating
the neighbourhood function of very large graphs on a
budget,” International world wide web conferences, pp.
625–634, 2011.

[11] J. Gao, C. Zhou, J. Zhou, and J. X. Yu, “Continuous pattern
detection over billion-edge graph using distributed
framework,” in Proc. 30th IEEE International Conference on
Data Engineering, 2014, pp. 556–567.

[12] A. Z. Broder and M. Mitzenmacher, “Network applications
of bloom filters: A survey,” Internet Mathematics, vol. 1,
no. 4, pp. 485–509, 2004.

[13] G. Cormode and S. Muthukrishnan, “An improved data
stream summary: The count-min sketch and its applications,”
latin american symposium on theoretical informatics., pp.
29–38, 2004.

[14] A. Mcgregor, “Graph stream algorithms: a survey,” SIGMOD
Record, vol. 43, no. 1, pp. 9–20, 2014.

[15] L. Gao, L. Golab, M. T. Ozsu, and G. Aluc, “Stream watdiv:
A streaming rdf benchmark,” no. 3, 2018.

[16] C. Stein, S. Drysdale, and K. Borgart, “Probability
calculations in hashing,” in Discrete Mathematics for
Computer Scientists. Addison-Wesley; 1st edition, 2010,
pp. 245–254.

[17] T. Schank and D. Wagner, “Finding, counting and listing all
triangles in large graphs, an experimental study,” in
Nikoletseas S.E. (eds) Experimental and Efficient Algorithms.
Lecture Notes in Computer Science, vol. 3503, 2005.

[18] E. Demaine and M. Hajiaghayi, “Bigdnd: Big dynamic
network data,” http://projects.csail.mit.edu/dnd/DBLP/.

[19] “Gtgraph: A suite of synthetic random graph generators,”
http://www.cse.psu.edu/∼kxm85/software/GTgraph/.

[20] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi,
“Measuring User Influence in Twitter: The Million Follower
Fallacy.”

[21] “Caida internet anonymized traces 2015 dataset,”
http://www.caida.org/home/.

14

http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazingtwitter-stats/10/
http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazingtwitter-stats/10/
http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazingtwitter-stats/10/
https://radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
https://radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
https://radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
https://arxiv.org/pdf/1801.09240.pdf
http://projects.csail.mit.edu/dnd/DBLP/
http://www.cse.psu.edu/~kxm85/software/GTgraph/
http://www.caida.org/home/

	1 Introduction
	2 Related Work
	2.1 General Streaming Graph Structures
	2.2 Specific Streaming Graph Structures

	3 Problem Definition
	4 DOLHA - DOUBLE ORTHOGONAL LIST IN HASH TABLE
	4.1 Dolha Snapshot Data Structure
	4.2 Dolha Snapshot Construction
	4.3 Time and Space Cost
	4.3.1 Time Cost
	4.3.2 Space Cost

	5 Dolha Persistent Structure
	5.1 Dolha Persistent Data Structure
	5.2 Dolha Persistent Construction
	5.2.1 Incoming Edge Processing
	5.2.2 Sliding Window Update

	5.3 Time and Space Cost

	6 Algorithms on Dolha
	6.1 Algorithms on Dolha Snapshot
	6.1.1 Query Primitives
	6.1.2 Directed Triangle Finding

	6.2 Algorithms on Dolha Persistent
	6.2.1 Query Primitives
	6.2.2 Time Related Queries

	7 Experimental Evaluation
	7.1 Experiment Setup
	7.1.1 Dataset
	7.1.2 Environment

	7.2 Dolha Snapshot Experimental Results
	7.2.1 Construction
	7.2.2 Query Primitives

	7.3 Dolha Persistent Experimental Results
	7.3.1 Construction and Sliding Window Update
	7.3.2 Query Primitives
	7.3.3 Time Related Queries

	8 Conclusions
	9 Additional Authors
	10 References

